Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Конструкции сушилок






Сушилки отличаются разнообразием конструкций и подразделяются по способу подвода теплоты (конвективные, контактные и др.); по виду используемого теплоносителя (воздух, газ, пар, топочные газы); по величине давления в сушилке (атмосферные и вакуумные); по способу организации процесса (периодического или непрерывного действия); по схеме взаимодействия потоков (прямоточные, противоточные, перекрестного и смешанного тока).

Конвективные сушилки, среди которых простейшими являются камерные (рис. 18.13), представляют собой корпус, внутри которого находятся вагонетки. На полках вагонеток помещается влажный материал. Теплоноситель нагнетается в сушилку вентилятором, нагревается в калорифере и проходит над поверхностью высушиваемого материала или пронизывает слой материала снизу вверх. Часть отработанного воздуха смешивается со свежим воздухом. Эти сушилки периодического действия работают при атмосферном давлении. Их применяют в малотоннажных производствах для сушки материалов при невысоких температурах в мягких условиях. Камерные сушилки имеют низкую производительность и отличаются неравномерностью сушки продукта.

 

Рис. 18.13. Камерная сушилка:

1 - корпус; 2 - вагонетка; 3 - калориферы; 4 - вентилятор; 5 - шибер

Туннельные сушилки. По организации процесса эти сушилки относятся к сушилкам непрерывного действия. Сушилки представляют собой удлиненный прямоугольный корпус, в котором перемещаются по рельсам тележки с высушиваемым материалом, расположенным на полках тележек. При этом время пребывания тележек в сушильной камере равняется продолжительности сушки. Сушка материала достигается за один проход тележек. Свежий воздух засасывается вентилятором и поступает, нагреваясь в калориферах, в сушилку. Перемещение тележек происходит с помощью толкателя. Сушилка имеет самоотворяющиеся двери.

 

Рис. 18.14. Туннельная сушилка:

1 - двери; 2 - газоход; 3 - вентилятор; 4 - калорифер; 5 - корпус; 6 - тележка с материалом

Горячий воздух взаимодействует в сушилке с материалом в прямотоке либо в противотоке. В ряде случаев в туннельных сушилках возможно осуществить рециркуляцию воздуха и его промежуточный подогрев в сушильной камере. Калориферы и вентиляторы устанавливают на крыше сушилки, сбоку или в туннеле под сушилкой. Отработанный воздух из сушилки выбрасывается через газоход.

Ленточные многоярусные конвейерные сушилки. Влажный материал загружается через верхний загрузочный бункер, как показано на рис. 18.15, или боковой и поступает на верхний перфорированный ленточный конвейер, на котором перемещается вдоль сушильной камеры, и затем пересыпается на нижерасположенный конвейер. С нижнего конвейера высушенный материал поступает в разгрузочный бункер или на приемный конвейер.

Пересыпание материала с ленты на ленту способствует его перемешиванию, что, в свою очередь, увеличивает скорость сушки.

Чтобы материал направленно пересыпался с вышерасположенного конвейера на нижерасположенный, устанавливают направляющие лотки.

 

Рис. 18.15.Ленточная сушилка:

1 - корпус; 2 - ленточный конвейер; 3 - ведущие барабаны; 4 - ведомые барабаны; 5 - калориферы; 6 - бункер с загрузочным устройством

 

Воздух нагнетается вентилятором, проходит через калорифер и направляется в сушильную камеру, где пронизывает слой материала на каждой перфорированной ленте. Для промежуточного подогрева воздуха под лентами каждого конвейера находится калорифер, выполненный из оребренных труб.

Ленточные сушилки бывают прямоточными и противоточными. В таких сушилках может быть предусмотрена рециркуляция воздуха. Благодаря промежуточному подогреву и рециркуляции воздуха в ленточных сушилках достигаются мягкие условия сушки.

Сушилки с псевдоожиженным слоем являются аппаратами непрерывного действия и применяются как для удаления поверхностной и слабосвязанной влаги, так и для удаления связанной влаги из мелкозернистых материалов. Сушилки с псевдоожиженным слоем изготовляют вертикальными и горизонтальными с одной или несколькими секциями. Схема односекционной сушилки представлена на рис. 18.17. Влажный материал непрерывно подается в сушилку. Теплоноситель, нагнетаемый вентилятором, нагревается в калорифере и поступает в сушилку под газораспределительную решетку. Сушка материала происходит в зоне сушилки, примыкающей к газораспределительной решетке. Высушенный материал удаляется из сушилки через патрубок. Отходящие из сушилки газы очищаются от пыли в циклоне и выбрасываются в атмосферу.

Рис. 18.17. Односекционная сушилка с псевдоожиженным слоем:

1 - вентилятор; 2 - калорифер; 3 - бункер; 4 - шнек; 5 - циклон; 6 - корпус сушилки; 7 - выгрузной патрубок; 8 - газораспределительная решетка; 9 - конвейер

Недостаток односекционных сушилок — неравномерность сушки материала. Для повышения равномерности сушки применяют многосекционные сушилки. Секционирование аппаратов достигается делением с помощью перегородок всего объема аппарата, а значит, и слоя материала на ряд горизонтальных секций вертикальными перегородками или на вертикальные секции горизонтальными перфорированными перегородками.

Вибросушилки применяют для сушки плохоожижаемых материалов: влажных тонкодисперсных, полидисперсных, комкающихся и т. д., которых в промышленности большинство. Воздействие на слой дисперсного материала низкочастотных колебаний интенсифицирует тепломассообменные процессы в слое и открывает широкие возможности для создания высокоэффективных сушилок перекрестного тока, приближающихся по полю распределения температур и концентраций к аппаратам идеального вытеснения.

Виброаэропсевдоожиженный (виброкипящий) слой может быть создан в аппаратах разнообразных конструкций: вертикальных, горизонтальных и лотковых.

Наибольшее применение нашли лотковые сушилки, наклоненные под небольшим углом к горизонту (рис. 18.18). Привод сушилки состоит из маятникового двигателя — вибратора направленного действия с регулируемым дебалансом.

 

Рис. 18.18. Вибросушилка:

1 - амортизатор; 2 - пружина; 3 - выгрузной люк; 4 - вибратор; 5 - двигатель; 6 - газораспределительная решётка; 7 - желоб; 8 - смотровое окно

 

Наибольшее практическое значение для проведения тепломассообменных процессов имеет виброаэропсевдоожиженный слой, образуемый одновременно потоком газа через слой и низкочастотной вибрацией.

Барабанные сушилки. Сушка в барабанных сушилках происходит при атмосферном давлении. Теплоносителем являются воздух либо топочные газы.

Барабанные сушилки (рис. 18.19) имеют цилиндрический полый горизонтальный барабан, установленный под небольшим углом к горизонту.

Рис. 18.19. Барабанная сушилка:

1 – топка; 2 - бункер; 3 - барабан; 4 - бандажи; 5 - зубчатое колесо; 6 - вентилятор; 7 - циклон; 8 - приёмный бункер; 9 - шлюзовой питатель; 10 - опорные ролики

 

Барабан снабжен бандажами, каждый из которых катится по двум опорным роликам и фиксируется упорными роликами. Барабан приводится во вращение от электропривода с помощью насаженного на барабан зубчатого колеса. Частота вращения барабана не превышает 5...8 мин-1. Влажный материал поступает в сушилку через питатель. При вращении барабана высушиваемый материал пересыпается и движется к разгрузочному отверстию. За время пребывания в барабане материал высушивается при взаимодействии с теплоносителем — в данном случае с топочными газами, которые поступают в барабан из топки.

Вальцовые сушилки (рис. 18.21) предназначены для сушки жидких и пастообразных материалов: всевозможных паст и других материалов. Греющий пар поступает в вальцы, вращающиеся навстречу друг другу с частотой 2... 10 мин-1, через полую цапфу, а конденсат выводится через сифонную трубу. Материал загружается сверху между вальцами и покрывает их тонкой пленкой, толщина которой определяется регулируемым зазором между вальцами. Высушивание материала происходит в тонком слое за полный оборот вальцов. Подсушенный материал снимается ножами вдоль образующей каждого вальца. В случае необходимости досушки материала вальцовую сушилку снабжают гребковыми досушивателями.

Рис. 18.21. Вальцовая сушилка:

1 - досушиватель; 2 - корпус; 3 - привод; 4 - ведущий валец; 5 - сифонная трубка; 6 - нож; 7 - ведомый валец

Распылительные сушилки предназначены для сушки растворов, суспензий и пастообразных материалов.

Распылительные сушилки представляют собой в большинстве случаев коническо-цилиндрический аппарат, в котором происходит диспергирование материала при помощи специальных диспергаторов в поток теплоносителя. В качестве диспергаторов применяют центробежные распылители, пневматические и механические форсунки.

При непосредственном контакте теплоносителя — воздуха с распыленным материалом почти мгновенно протекает тепломассообменный процесс. Продолжительность пребывания материала в сушилке не превышает 50 с.

Преимущество распылительных сушилок — возможность использования теплоносителей с высокой температурой даже для сушки термолабильных материалов.

Однако распылительные сушилки имеют сравнительно небольшой удельный съем влаги в пределах до 20 кг/м3, большой расход теплоносителя и, как следствие, значительную материало- и энергоемкость.

Сублимационные сушилки. Сублимационную сушку проводят в глубоком вакууме при остаточном давлении 133, 3...13, 3 Па (1, 0...0, 1 мм рт. ст.) и при низких температурах.

При сублимационной сушке замороженных продуктов находящаяся в них влага в виде льда переходит непосредственно в пар, минуя жидкое состояние.

Перенос влаги в виде пара от поверхности испарения происходит путем эффузии, т.е. свободного движения молекул пара без взаимных столкновений друг с другом.

Сублимационная сушилка (рис. 18.26) состоит из сушильной камеры (сублиматора), в которой расположены пустотелые плиты, и конденсатора — вымораживателя.

 

Рис. 18.26. Сублимационная сушилка:

1 - сушильная камера; 2 - плита; 3 - противень; 4 - конденсатор-вымораживатель

 

В плитах циркулирует горячая вода. Высушиваемый материал в противнях размещается на плитах. Противни имеют специальные бортики, которые обеспечивают воздушную прослойку между плитами и противнями. Теплота от плит к противням передается за счет радиации. Образовавшаяся при сушке паровоздушная смесь из сублиматора поступает в конденсатор-вымораживатель — кожухотрубный теплообменник, в межтрубном пространстве которого циркулирует хладагент — аммиак. Конденсатор-вымораживатель включают в циркуляционный контур с испарителем аммиачной холодильной установки и соединяют с вакуум-насосом, предназначенным для отсасывания несконденсировавшихся газов. В трубах конденсатора происходят конденсация и вымораживание водяных паров. Обычно сублимационные сушилки имеют два попеременно работающих конденсатора: в то время как в одном конденсаторе происходят конденсация и замораживание, другой размораживается для удаления льда.

Влагу удаляют из материала в три стадии. На первой стадии при снижении давления в сушильной камере происходят самозамораживание влаги и сублимация льда за счет теплоты, отдаваемой материалом. При этом удаляется до 15% всей влаги. Вторая стадия — сублимация, при которой удаляется основная часть влаги. На третьей стадии тепловой сушки удаляется оставшаяся влага.

По энергоемкости сублимационная сушка приближается к сушке при атмосферном давлении.

Терморадиационная сушилка. При сушке инфракрасными лучами теплота для испарения влаги подводится термоизлучением. Генератором, излучающим теплоту, являются специальные лампы или нагретые керамические или металлические поверхности.

При сушке термоизлучением на единицу поверхности материала в единицу времени приходится значительно больше теплоты, чем при сушке нагретыми газами или при контактной сушке. Процесс сушки значительно ускоряется. Так, продолжительность сушки инфракрасными лучами тонкослойных материалов сокращается в 30... 100 раз.

Высокочастотные сушилки. При высокочастотной сушке можно регулировать температуру и влажность не только на поверхности, но и по толщине материала.

СВЧ-сушилка (рис. 18.28) состоит из лампового высокочастотного генератора и сушильной камеры, внутри которой находится ленточный конвейер. Переменный ток из сети частотой 50 Гц поступает в выпрямитель, а затем в генератор, где преобразуется в переменный ток высокой частоты. Этот ток подводится к пластинам конденсатора, которые расположены с обеих сторон ленточного конвейера. Под действием поля высокой частоты ионы и электроны материала меняют направление движения синхронно с изменением знака заряда пластин кондесатора. Дипольные молекулы получают вращательное движение, а неполярные поляризуются из-за смещения их электрических зарядов. В результате этих процессов в материале выделяется теплота и материал нагревается. Изменяя напряженность электрического поля, можно регулировать скорость сушки.

При высокочастотной сушке требуются высокие удельные расходы энергии (2, 5...5 кВт*ч на 1 кг испаренной влаги). Конструкция высокочастотных сушилок более сложная и дорогая, чем конвективных и контактных.

 

Лекция 34 Кристаллизация. Общие сведения о процессе; область применения. Материальный и тепловой балансы кристаллизации

 

Кристаллизация — один из распространенных и наиболее эффективных методов получения вещества в чистом виде.

Кристаллизацией называют процесс выделения твердой фазы в виде кристаллов из растворов и расплавов. Кристаллы представляют собой твердые тела различной геометрической формы, ограниченные плоскими гранями. Кристаллы, содержащие молекулы воды, называют кристаллогидратами.

В пищевой технологии выделение твердой фазы из растворов или расплавов в виде кристаллического продукта является завершающей стадией технологического процесса получения сахарозы, глюкозы, соли и других кристаллических продуктов.

Кристаллизацию, как правило, проводят из водных растворов. При понижении температуры или удалении части растворителя уменьшается растворимость твердого вещества. Раствор становится пересыщенным, и твердое вещество выпадает из раствора в осадок.

Производственный технологический процесс, кристаллизации состоит из нескольких стадий: кристаллизация, отделение кристаллов от маточных растворов, перекристаллизация (если требуется), промывка и сушка кристаллов.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.