Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Основные сведения о частотно-регулируемом электроприводе. Скалярное и векторное управление асинхронным двигателем






1.5.1 Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.
Известно, что регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.
Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации. Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

 

.

 

неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора.
Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.
Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики.
Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Закон изменения напряжения зависит от характера момента нагрузки Mс. При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:

 

.

Для вентиляторного характера момента нагрузки это состояние имеет вид:

 
 


.

 

При моменте нагрузки, обратно пропорциональном скорости:

 

 
 


.

 

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя.

При скалярном управлении по определенному закону изменяют амплитуду и частоту приложенного к двигателю напряжения. Изменение частоты питающего напряжения приводит к отклонению от расчетных значений максимального и пускового моментов двигателя, к.п.д., коэффициента мощности. Поэтому для поддержания требуемых рабочих характеристик двигателя необходимо с изменением частоты одновременно соответственно изменять и амплитуду напряжения.

В существующих преобразователях частоты при скалярном управлении чаще всего поддерживается постоянным отношение максимального момента двигателя Ммакс к моменту сопротивления на валу Мс. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя.

При постоянстве перегрузочной способности номинальные коэффициент мощности и к.п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.

Основная особенность при регулировании АД заключается в том, что необходимо изменять напряжение U на статоре как в функции момента статических Mс сопротивлений, так и в соответствии с изменением частоты.

Таким образом, при скалярном методе управления зависимость напряжения питания от частоты определяется характером нагрузки на валу электрического двигателя. При этом для постоянного момента нагрузки всегда поддерживается отношение U / f = cоnst, и, по сути, обеспечивается постоянство максимального момента двигателя. Вместе с тем на малых частотах, начиная с некоторого значения частоты, максимальный момент двигателя начинает падать. Для компенсации этого и для увеличения пускового момента используется повышение уровня на­пряжения питания.

Используя зависимость максимального крутящего момента отнапряжения и частоты, можно построить график для U от f для любого типа нагруз­ки.

Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей.

Скалярное управление достаточно для большинства практических случаев применения частотно - регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1: 40.

Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять кроме амплитуды и фазу статорного тока, то есть век­тор тока. Этим и обусловлен термин «векторное управление».

Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением поло­жения ротора путем вычислений по другим параметрам двигателя. В качест­ве этих параметров используются токи и напряжения статорных обмоток.

Менее дорогим является частотно - регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты.

Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно регулируемого электропривода без обратной связи по скорости невозможна.

Векторное управление с датчиком обратной связи скорости обеспечивает диапазон регулирования до 1: 1000 и выше, точность регулирования по скорости – сотые доли процента, точность по моменту – единицы процентов.

В синхронном частотно-регулируемом приводе применяются те же ме­тоды управления, что и в асинхронном.

Управляющая часть ПЧ выполняется на цифровых микропроцессорах и обеспе­чивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита). При этом на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды (ивых = vаr, ƒ вых = vаr).

Механические характеристики асинхронного двигателя при частотном регулировании скорости для различных объектов управления имеют вид представленный на рисунке 1.2.

 

 
 

Итак, при объектах управления с постоянным моментом статической нагрузки Mc = Const, напряжение источника питания должно изменяться пропорционально его частоте U/f = const в объектах управления, требующих регулирования скорости при постоянстве мощности Pc=Const закон управления, будет: U/Ö f = const, при вентиляторной нагрузке закон управления соответствует U/f2 = const. По этим соображениям наибольшее распространение метод регулирования получил для механизмов Mс = Const, хотя в принципе использование функциональных преобразователей позволяет реализовать любой из этих законов.

До последнего времени системы электроприводов прямоточных волочильных станов строились исключительно на базе двигателей постоянного тока. Причиной этому являлось отсутствие надежных преобразователей частоты. При этом системы тиристорный преобразователь двигатель (ТП-Д) имеют такие недостатки, как:

- ограничение темпа нарастания тока якоря, повышенный момент инерции электропривода, приводящие к снижению быстродействия систем автоматического регулирования;

- высокие массогабаритные показатели;

- трудоемкость в обслуживании.

Перечисленные недостатки обусловлены наличием коллектора и соответственно процессов коммутации и могут быть исключены при построении системы электропривода на основе асинхронного короткозамкнутого двигателя.

В настоящее время имеется достаточный опыт промышленного применения электроприводов по системе ПЧ-АД в диапазоне мощностей 35...100 кВт.

Таким образом, система ПЧ-АД имеющая диапазон регулирования до 1: 1000 и выше, точность регулирования по скорости – сотые доли процента и точность по моменту – единицы процентов может обеспечивать необходимую синхронизацию скоростей приводных электродвигателей в прямоточном волочильном стане с целью безобрывного волочения и заданной величиной противонатяжения проволоки.

1.5.2 Насосные станции с частотными электроприводами. В насосной станции №1 в г. Талдыкорган обычный короткозамкнутый асинхронный электродвигатель насоса мощностью 110 кВт/ч включен через преобразователь ПЧТ, разработанный в НИИ ХЭМЗ. Система управления электроприводом построена аналогично ранее описанным, за исключением того, что в качестве преобразователя уровня в системе использован ультразвуковой уровнемер ЭХО3. Применение частотного электропривода в этой установке уменьшает потребление электроэнергии на 60 тыс. кВт - ч в год, Т.о. примерно на 5 %.

В насосных станциях г. Талдыкорган используются также частотные преобразователи типа ПЧР-2 и производства финской фирмы Stromberg, на основе которых созданы и работают свыше 10 систем автоматического регулирования режима работы насосных станций с агрегатами мощностью от 75 до 160 кВт.

Частотные преобразователи фирмы Stromberg - высоконадежные и достаточно компактные средства регулирования насосных агрегатов. Для обеспечения равномерного использования насосных агрегатов предусматривается устройство, с помощью которого они могут поочередно подключаться к одному преобразователю.

1.5.3 Многоскоростные электродвигатели в насосных установках. Циркуляционные насосные станции некоторых талдыкорганских ТЭЦ укомплектованы вертикальными насосными агрегатами с двухскоростными двигателями марки ДВДА215/64-16-20К. Из семи насосов каждой станции два приводятся во вращение этими электродвигателями. Номинальная мощность двигателей 1400 кВт, частота вращения 375 и 300 об/мин. Наличие таких насосных агрегатов позволяет лучше приспосабливать режим работы насосной установки к режиму работы теплосети. Применяются двухскоростные электродвигатели и в водопроводных насосных установках.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.