Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Структура микромира




На рубеже XIX—XX вв. в естественно-научной картине мира произошли радикальные изменения, вызванные новейшими научными открытиями в области физики и затронувшие ее основополагающие идеи и установки. В результате научных открытий были опровергнуты традиционные представления классической физики об атомной структуре вещества. Открытие электрона означало утрату атомом статуса структурно неделимого элемента материи и тем самым коренную трансформацию классических представлений об объективной реальности. Новые открытия позволили:

1) выявить существование в объективной реальности не только макро-, но и микромира;

2) подтвердить представление об относительности истины, являющейся только ступенькой на пути познания фундаментальных свойств природы;

3) доказать, что материя состоит не из «неделимого первоэлемента» (атома), а из бесконечного многообразия явлений, видов и форм материи и их взаимосвязей.

Концепция элементарных частиц.Переход естественно-научных знаний с атомного уровня на уровень элементарных частиц привел ученых к заключению, что понятия и принципы классической физики оказываются неприменимыми к исследованию физических свойств мельчайших частиц материи (микрообъектов), таких, как


электроны, протоны, нейтроны, атомы, которые образуют невидимый нами микромир. В силу особых физических показателей свойства объектов микромира совершенно не похожи на свойства объектов привычного нам макромира и далекого мегамира. Отсюда возникла необходимость отказа от привычных представлений, которые навязаны нам предметами и явлениями макромира. Поиски новых способов описания микрообъектов способствовали созданию концепции элементарных частиц.

Согласно этой концепции основными элементами структуры микромира выступают микрочастицы материи, которые не являются ни атомами, ни атомными ядрами, не содержат в себе каких-либо других элементов и обладают наиболее простыми свойствами. Такие частицы были названы элементарными, т.е. самыми простыми, не имеющими в себе никаких составных частей.

После того как было установлено, что атом не является последним «кирпичиком» мироздания, а построен из более простых элементарных частиц, их поиск занял главное место в исследованиях физиков. История открытия фундаментальных частиц началась в конце XIX в., когда в 1897 г. английский физик Дж. Томсон открыл первую элементарную частицу — электрон. История открытия всех известных сегодня элементарных частиц включает два этапа.

Первый этап приходится на 30—50-е гг. XX в. К началу 1930-х гг. были открыты протон и фотон, в 1932 г. — нейтрон, а спустя четыре года — первая античастица — позитрон, которая по массе равна электрону, но имеет положительный заряд. К концу этого периода стало известно о 32 элементарных частицах, причем каждая новая частица была связана с открытием принципиально нового круга физических явлений.



Второй этап приходится на 1960-е гг., кода общее число известных частиц превысило 200. На этом этапе основным средством открытия и исследования элементарных частиц стали ускорители заряженных частиц. В 1970-80-е гг. поток открытий новых элементарных частиц усилился, и ученые заговорили о семействах элементарных частиц. На данный момент науке известно более 350 элементарных частиц, различающихся массой, зарядом, спином, временем жизни и еще рядом физических характеристик.

Все элементарные частицы обладают некоторыми общими свойствами. Одно из них — свойство корпускулярно-волнового дуализма, т.е. наличие у всех микрообъектов как свойств волны, так и свойств вещества.

Другим общим свойством является наличие почти у всех частиц (кроме фотона и двух мезонов) своих античастиц. Античастицы — это элементарные частицы, схожие с частицами по всем признакам, но отличающиеся противоположными знаками электрического за-


ряда и магнитного момента. После открытия большого числа античастиц ученые заговорили о возможности существования антивещества и даже антимира. При соприкосновении вещества с антивеществом происходит процесс аннигиляции — превращение частиц и античастиц в фотоны и мезоны больших энергий (вещество превращается в излучение).

Еще одним важнейшим свойством элементарных частиц является их универсальная взаимопревращаемость. Этого свойства нет ни в макро-, ни в мегамире.



Классификация элементарных частиц.Элементарные частицы — основные «кирпичики», из которых состоит как материя, так и поле. При этом все элементарные частицы неоднородны: некоторые из них являются составными (протон, нейтрон), а другие — несоставными (электрон, нейтрино, фотон). Частицы, которые не являются составными, называют фундаментальными.

В целом элементарные частицы обладают довольно большим количеством характеристик. Некоторые из характеристик положены в основу классификации элементарных частиц.

Так, одной из важнейших характеристик частиц является их масса. Масса элементарной частицы — это масса ее покоя, которая определяется по отношению к массе покоя электрона, который, в свою очередь, считается самой легкой из всех частиц, имеющих массу. В зависимости от массы покоя все частицы можно подразделить на несколько групп:

частицы, не имеющие массы покоя. К этой группе частиц относят фотоны, движущиеся со скоростью света;

лептоны (от «лептос» — легкий) — легкие частицы (электрон и нейтрино);

мезоны (от «мезос» — средний, промежуточный) — средние частицы с массой от одной до тысячи масс электрона;

барионы (от «барос» — тяжелый) — тяжелые частицы с массой более тысячи масс электрона (протоны, нейтроны, гипероны, многие резонансы).

Второй важной характеристикой элементарных частиц является электрический заряд. Он всегда кратен фундаментальной единице заряда — заряду электрона (—1), который рассматривается в качестве единицы отсчета зарядов. Заряд частиц может быть отрицательным, положительным либо нулевым. Как предполагают ученые, существуют также частицы с дробным электрическим зарядом — кварки, экспериментальное наблюдение которых пока невозможно.

Третьей характеристикой элементарных частиц служит тип физического взаимодействия, в котором участвуют элементарные частицы. По данному показателю все многообразие элементарных частиц можно подразделить на три группы:


1) адроны (от «андрос» — крупный, сильный), участвующие в электромагнитном, сильном и слабом взаимодействии;

2) лептоны, участвующие только в электромагнитном и слабом взаимодействии;

3) частицы — переносчики взаимодействий. Частицы — переносчики взаимодействий непосредственно обеспечивают взаимодействие. К ним относятся фотоны — переносчики электромагнитного взаимодействия, глюоны — переносчики сильного взаимодействия, тяжелые векторные бозоны — переносчики слабого взаимодействия. Высказывается также предположение о существовании гравитонов — частиц, обеспечивающих гравитационное взаимодействие.

Четвертой основной характеристикой элементарных частиц выступает время их жизни, которое определяет их стабильность или нестабильность. По времени жизни частицы делятся на стабильные, квазистабильные и нестабильные. Большинство элементарных частиц нестабильно, время их жизни составляет 10-10— 10-24 с, т.е. несколько микросекунд. Стабильные частицы не распадаются длительное время. Они могут существовать от бесконечности до 10-10 с. Стабильными частицами считаются фотон, нейтрино, нейтрон, протон и электрон. Квазистабильные частицы распадаются в результате электромагнитного и слабого взаимодействий, иначе их называют резонансами. Время жизни резонансов составляет от 10-24 до 10-26 с.

Важнейшей характеристикой частиц является спин — собственный момент количества движения (импульса) частицы. В классической механике такая величина характеризует вращение тела, например волчка. Но буквальный перенос этого понятия на микрочастицы теряет смысл, поскольку элементарные частицы невозможно представить вращающимися крохотными шариками. В физике спин интерпретируется как внутренняя степень свободы частицы, обеспечивающая ей дополнительное физическое состояние. В отличие от классического момента количества движения, который может принимать любые значения, спин принимает только пять возможных значений. Он может равняться целому (0, 1, 2) или полуцелому (1/2, 3/2) числу. Свойства и поведение частиц существенно зависят от того, целое или полуцелое значение имеет их спин. Частицы с полуцелым спином называются фермионами, а с целым спином — бозонами.

Фермионы — это не что иное, как частицы вещества, которые хотя и обладают волновыми свойствами, но в классическом пределе воспринимаются как истинные частицы. К ним относятся такие известные частицы, как электроны, протоны, нейтроны, спин которых равен 1/2. Известна частица, спин которой равен 3/2, — омега-гиперон. Все эти частицы обладают свойством, имеющим характер


закона: частицы с полуцелым спином могут находиться вместе лишь при условии, что их физические состояния, т.е. совокупность характеризующих частицу параметров, неодинаковы. Данный закон в квантовой механике называется запретом Паули. Если бы этого запрета не существовало, то еще в первые мгновения существования нашей Вселенной образовавшиеся частицы вещества слиплись и превратились в более или менее однородное «желе», не позволив образоваться современной структурной Вселенной.

Бозоны — это кванты полей, которые хотя и обладают корпускулярными свойствами, однако в классическом пределе выступают как поля. На них запрет Паули не распространяется. Примером бозонов служит фотон, спин которого равен 1, и мезон, спин которого равен 0. Возможно, существуют частицы со спином 2 — гравитоны.

Все перечисленные элементарные частицы являются переносчиками физических взаимодействий.

Теория кварков.В середине 60-х гг. XX в. число открытых адронов превысило сотню. В связи с этим возникла гипотеза, согласно которой наблюдаемые частицы не отражают предельного уровня делимости материи. На основе этой гипотезы была создана теория кварков. Ее авторами стали физики Калифорнийского университета М. Гелл-Манн и Дж. Цвейг. Термин «кварк» они позаимствовали из романа Дж. Джойса «Поминки по Финнегану», герою которого снился сон, в котором летали чайки и кричали: «Три кварка для мистера Марка!». Само по себе слово «кварк» не имеет какого-либо смыслового значения и в переводе с немецкого языка оно означает «чепуха», но авторы теории понимали его как гипотетический материальный объект, существование которого еще не доказано наукой. Имея форму гипотезы, кварковая теория тем не менее позволила систематизировать известные частицы и предсказать существование новых.

Основные положения теории кварков заключаются в следующем. Аароны состоят из более мелких частиц — кварков, которые представляют собой истинно элементарные частицы и поэтому бесструктурны. Главная особенность кварков — их дробный электрический заряд. Кварки могут соединяться друг с другом двумя способами — парами и тройками. Соединение трех кварков приводит к образованию барионов, кварка и антикварка — к образованию мезонов, трех антикварков — к образованию антибарионов. Большинство образующихся частиц являются барионными и мезонными ре-зонансами. При таком соединении дробные заряды суммируются до нуля или единицы.

Кварки различаются ароматом и цветом. Аромат кварка не имеет никакого отношения к аромату, понимаемому буквально (т.е. как аромат цветов, духов и т.п.), это его особая физическая характеристика. Существует шесть видов кварков, различающихся ароматом:


u (up — верхний), d (down — нижний), s (strange — странный), с (charm — очарование), b (beauty — прелесть), t (top — верхний). Их обозначают первыми буквами своих названий.

Кроме того, считается, что каждый кварк имеет один их трех возможных цветов, которые самими учеными выбраны произвольно: красный, зеленый, синий. Также понятно, что цвет кварка не имеет никакого отношения к обычному оптическому цвету в макромире. Цвет кварка, как и аромат, — условное название для определенной физической характеристики этих частиц. Цвет кварка практически означает разновидность «заряда» сильного ядерного взаимодействия. «Заряд» сильного взаимодействия в физике именуется «цветом». Каждый кварк может быть носителем одного из трех основных «зарядов», или цветов, — синего, зеленого, красного. Иначе говоря, каждый кварк может иметь «заряд» красного цвета, или «заряд» синего цвета, или «заряд» зеленого цвета. Понятие цвета было введено, чтобы не отказываться от запрета Паули, так как в барионных и антибарионных частицах кварки одного аромата часто оказывались вместе. Например, протон является комбинацией кварков uud, а нейтрон — udd.

Каждому кварку соответствует антикварк с противоположным цветом (антикрасный, антизеленый и антисиний). Таким образом, 6 кварков и 6 антикварков, т.е. 12 фундаментальных частиц, призваны объяснить почти все многообразие частиц, кроме лептонов.

При объединении кварков и антикварков должны выполняться два условия:

1) суммарный электрический заряд кварков в адроне должен
быть целочисленным, скомпенсированным до нуля или единицы;

2) кварки, соединяющиеся в адрон, должны полностью компен
сировать свои цветовые заряды и удовлетворять признаку бесцвет
ности (конфайнмент). Их цвета («заряды») соединяются так же, как
в оптике, где сложение красного, синего и зеленого дает белый
(бесцветный) цвет. Белый цвет дает сумма красного, зеленого, си
него или красного — антикрасного, синего — антисинего и т.п.

Кварки объединяются между собой благодаря сильному взаимодействию. Переносчиками сильного взаимодействия выступают глюоны, которые как бы «склеивают» кварки между собой. Предполагается, что кварки участвуют также в электромагнитных и слабых взаимодействиях. В электромагнитном взаимодействии кварки не меняют своего цвета и аромата. В слабых взаимодействиях кварки меняют аромат, но сохраняют цвет.

Долгое время ученые пытались обнаружить кварки в многочисленных экспериментах, доводя точность измерений в них до очень высоких значений, но сделать этого не удалось. Ученым пришлось признать, что законы нашего мира запрещают существование отдельных частиц с дробным электрическим зарядом. Однако в 1969 г.


в Стэнфордском университете США были проведены опыты, доказавшие существование кварков. В ходе экспериментов при бомбардировке электронами протонов бьио обнаружено, что электроны как бы налетали на твердые крохотные вкрапления и отскакивали от них под самыми невероятными углами. Ученые предположили, что эти твердые вкрапления и были кварками. В настоящее время теория кварков продолжает развиваться и уточняться, поэтому ее нельзя считать окончательно сформированной.


mylektsii.ru - Мои Лекции - 2015-2018 год. (0.011 сек.)Пожаловаться на материал