Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Операторы языка Си






 

Язык Си обладает некоторым набором операторов, которые представлены в табл. 3.2. Полное множество операторов разбито на пять групп: общие, арифметические, логические, битовые манипуляции, унарные.

Операторы общей группы предназначаются для записи выражений на языке Си. Арифметические операторы предназначены для выполнения математических действий над переменными, таких как сложение, вычитание, умножение и деление. Логические операторы используются в выражениях для определения истинности некоторого условия. Битовые операции предназначены для модификации одного или нескольких битов переменной. Унарные операции используются для выполнения действий только над одной переменной.

В первой колонке табл. 3.2. указан приоритет оператора в том случае, если выражение содержит сразу несколько операторов. Приведем примеры последовательности применения операторов.

 

 

 

 

 

 

Приоритет в выражениях Имя оператора Символ для обозначения
Общие
1
Скобки (), {}
  Разделители ->,.
  Условие ?:
  Присваивание =, +=, *= и т.д.
Арифметические
3
Умножение *
  Деление /
  Получение целочисленного остатка от деления %
  Сложение +
  Вычитание -
Логические
6
Меньше <
  Меньше или равно < =
  Больше >
  Больше или равно > =
  Равно ==
  Не равно ! =
  Логическое И & &
  Логическое ИЛИ ||
Битовые манипуляции
5
Сдвиг влево < <
  Сдвиг вправо > >
  Поразрядное И &
  Поразрядное исключающее ИЛИ ^
  Поразрядное ИЛИ |
Унарные
2
Инверсия !
  Взятие обратного кода числа ~
  Инкремент ++
  Декремент --
  Минус -
  Привести к типу (type)
  Указатель *
  Взять адрес &
  Определить размер sizeof

Табл. 3.2. Операторы языка Си

 

Операторы общей группы. Круглые скобки из группы общих операторов используются для определения порядка выполнения действий над операндами. Допустим, в строке программы записано следующее выражение:

2 * 23 + 15

Оператор умножения имеет приоритет над оператором сложения, поэтому результат вычисления выражения будет равен 61. Какие изменения мы должны внести в выражение, если хотим сначала сложить 23 и 15, и лишь затем умножить сумму на 2? Для изменения порядка действий над операндами мы воспользуемся круглыми скобками:

2 * (23 + 15)

И результат вычислений станет равным 76.

Фигурные скобки следует использовать для объединения некоторого множества операторов в законченный смысловой блок, например в функцию или цикл «loop». Примеры использования фигурных скобок, а также других операторов из группы общих рассматриваются в разделе 3.4.

Операторы группы арифметических операций. Рассмотрим последовательность выполнения действий над операндами при исполнении микроконтроллером следующего выражения:

Sum = 2 + 3;

Для вычисления значения переменной sum сначала реализуется оператор сложения «+», а затем оператор присваивания «=». В колонке 1 табл. 3.2 отражено, что оператор сложения имеет приоритет над оператором присваивания. При этом необходимо, чтобы переменная sum ранее была определена как int. Что произойдет в случае, если переменная sum ранее была объявлена как переменная другого типа, например float? После сложения результат будет преобразован к тому формату представления числа, который был объявлен при определении переменной sum.

Рассматриваемый пример может быть реализован с использованием другого синтаксиса:

num1 = 2;

num2 = 3;

sum = num1 + num2;

Подразумевается, что все упомянутые переменные num1, num2 и sum ранее были определены.

Операторы инкремента и декремента производят действия только над одной переменной. При этом, три приведенных ниже записи, отличаются синтаксисом выражения, но производят одинаковые действия:

number = number + 1;

number++;

++number;

Аналогично, три следующих записи реализуют операцию декремента, т.е. уменьшения на единицу переменной number.

number = number - 1;

number--;

--number;

Операция получения целочисленного остатка от деления 2%3 возвращает 2, так как целочисленное деление 2 на 3 не может быть произведено. Результат операции 14%3 также равен 2, поскольку результат целочисленного деления 14 на 3 равен 4 с остатком 2.

Операторы логической группы. Операторы этой группы используются для определения условий, по которым реализуется ветвление алгоритма. Операторы логической группы возвращают в виде результата 1, если результат операции «правда», и 0, если результат операции «ложь». Допустим, мы хотим сравнить текущее значение некоторой переменной с пороговым значением 82. Для этого могут быть использованы операторы больше «>», меньше «<», больше или равно «> =», меньше или равно «< =», не равно «! =» или равно «==». Рассмотрим следующую запись на Си:

value = temperature > 82;

После исполнения приведенной строки программы переменной value будет присвоено значение 1 или 0. Уместно вспомнить, что логические операции имеют приоритет над операцией присваивания. Поскольку результатом «вычисления» выражения справа может быть только 0 или 1, то и переменная value должна быть ранее объявлена соответствующим образом.

Операторы группы битовых манипуляций. Как было отмечено ранее, одним из преимуществ языка Си для программирования микроконтроллерных систем по сравнению с другими языками высокого уровня, является возможность непосредственного изменения данных в ячейках памяти, например с использованием оператором побитового логического И, ИЛИ и Исключающего ИЛИ. Самый простой пример применения операций сдвига это умножение и деление числа на число 2n. Рассмотрим результат выполнения следующих трех операторов:

number = 24;

new_number_one = number < < 1;

new_number_two = number > > 1;

Допустим, что три используемые в примере переменные определены как int. В первой строке переменной number присваивается значение 24 в десятичной системе счисления. Это же значение в двоичной системе счисления будет равно 00000000 00011000. Результатом действия оператора «< <» будет сдвиг влево на один разряд значения переменной number, т.е. 00000000 00110000 или 48 в десятичной системе счисления. Это значение и будем присвоено переменной new_number_one. В третьей строке оператор «> >» реализует сдвиг вправо числа number. Получится новое двоичное число 00000000 00001100 или 12 в десятичной системе счисления. В результате, значение переменной new_number_one будет равно удвоенному значению переменной number, в то время как переменная new_number_two будет равна поделенному на 2 значению number. С использованием рассматриваемых операторов мы можем также выполнить сдвиг на несколько разрядов, тогда результат операции будет эквивалентен умножению или делению на 2n. Например, если n = 3, то после выполнения следующих трех операторов:

number = 24;

new_number_one = number < < 3;

new_number_two = number > > 3;

значение переменной new_number_one будет равно 192 (двоичный код 00000000 11000000), а значение переменной new_number_two — 3 (двоичный код 00000000 00000011).

Рассмотрим два других логических оператора: поразрядное логическое И и поразрядное логическое ИЛИ.

 

Символ Операция Пример
& Логическое И *(0x0023) & 0x57
| Логическое ИЛИ *(0x0000) | 0x35

Все числа, записанные в колонке «Пример», представлены в шестнадцатеричном коде, поскольку содержат префикс 0x. Унарный оператор * показывает, что действие будет производиться над содержимым ячейки памяти с физическим адресом, значение которого в шестнадцатеричном коде указано в скобках.

Результат операции логического И над двумя двоичными числами 01011100 и 11000111 будет равен:

& 11000111

----------

Результат операции логическое ИЛИ над теми же числами:

| 11000111

----------

В каких задачах управления используются эти логические операторы? В прикладных программах (т.е. программах управления) часто приходится изменять сигналы на отдельных линиях портов ввода/вывода. Регистры данных портов расположены по строго определенным в техническом описании физическим адресам. Так для того, чтобы сконфигурировать все линии порта PORT A на ввод, необходимо в регистр направления передачи порта DDRA (физический адрес 0x0002) записать все нули. Это может быть выполнено под управлением следующей строки:

*(unsigned char volatile*)(0х0002) = 0х00;

Если порт Port A настроен на вывод, то установить линию PTA7 в единицу без изменения состояния остальных линий порта можно посредством следующей записи:

PORTA |= 0х80; //установить PTA7

Выше использована сокращенная форма записи выражения:

PORTA = PORTA | 0х80; //установить PTA7

Выражение возвращает результат операции поразрядного логического ИЛИ числа 0x80 (10000000 в двоичной системе счисления) и содержимого порта PortA. После операции старший бит Port A будет установлен в 1, остальные биты останутся без изменения.

Аналогично, старший бит порта Port A может быть установлен в 0 (сброшен) посредством записи выражения:

PORTA & = ~0х80; //сбросить бит PTA7

Это выражение аналогично другому, более понятному для начального уровня освоения языка Си:

PORTA = PORTA & 0х7F; //сбросить бит PTA7

Для установки в 0 старшего разряда порта Port A содержимое порта побитно логически умножается на константу 0x7F (01111111 в двоичном коде). В результате старший бит становится равным 0, а остальные биты остаются без изменения. Запись ~0х80 в первом выражении предписывает перед выполнением операции логического И взять инверсию константы 0x80 (10000000), которая будет равна 0x7F (01111111). Вторая запись более понятна на начальном этапе программирования на Си, в то время как первая запись позволяет использовать одну и ту же константу в выражениях по установки и сбросу бита, что в практическом программировании удобно.

Операцию поразрядного логического И также следует использовать, если необходимо проверить, установлены или сброшены биты порта с определенными номерами. Например, приведенный ниже фрагмент программы производит чтение регистра данных порта Port A, логически умножает его содержимое на константу 0x81 и сравнивает полученный результат с нулем. Если условие равенства нулю выполняется, то это означает, что биты 7 и 0 порта Port A одновременно равны нулю, и следует выполнить действия, которые описаны операторами в фигурных скобках. Если хотя бы один бит PTA7 или PTA0 не равен нулю, то условие ((PORTA & 0х81) == 0) не выполняется, и операторы в фигурных скобках будут пропущены при исполнении.

if ((PORTA & 0x81) == 0) {

:

}

В качестве примера использования оператора ИСКЛЮЧАЮЩЕГО ИЛИ приведем выражение для инвертирования значения бита 7 порта Port A:

PORTA ~= 0х80; //инвертировать бит PTA7

Операторы группы унарных операций. Поскольку операторы инкремента и декремента были рассмотрены выше, основное внимание уделим операторам указателя и косвенной адресации (см. табл. 3.2). Для иллюстрации действия этих операторов рассмотрим следующий пример. Определим три целочисленных переменных с именами num, address, и new_num:

int num, address, new_num;

Также предположим, что переменная num расположена в памяти по адресу 0x2000. Запишем следующее выражение:

address = & num;

Результатом исполнения выражения будет присвоение переменной address значения адреса переменной num, т.е. новое значение переменной address будет равно 0x2000.

Запишем новое выражение:

new_num = *address;

Результатом выполнения этого выражения будет присвоение переменной new_num значения, которое содержится в ячейке памяти, адрес которой равен текущему значению переменной address. Поскольку содержимое address равно 0x2000, т.е. адресу переменной num, то рассматриваемое выражение в нашем случае эквивалентно выражению:

new_num = num;

Несмотря на то, что в рассмотренных примерах используется корректный синтаксис, в стандарте ANSI C переменную, в которой будут храниться адреса, используемые в качестве указателей на ячейки памяти других переменных, следует определять следующим выражением:

int *address

Отличие от предыдущего способа определения состоит в том, что теперь компилятор самостоятельно определяет формат представления данных для переменной address, чтобы в этой переменной было бы возможно разместить численное значение адреса. Если бы в предыдущем случае программист ошибся и определил тип переменной address как char, то в процессе исполнения выражения address = & num возникла бы потеря информации. В последнем случае ошибка формата исключается.

Обсудим действие следующего выражения:

address = (int *) 0x1000;

Это выражение назначает ячейку памяти с адресом 0x1000 как указатель с именем address. Для того, чтобы извлечь содержимое ячеек памяти следует поместить оператор * перед именем address.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.