Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Экстремум функции нескольких переменных




 

Определение. Пусть функция определена в некоторой области , и - произвольная точка этой области. Если для всех точек из некоторой окрестности точки выполняется неравенство:

то точка называется точкой локального максимума (локального минимума) функции в области .

Определение.Точки локального максимума и локального минимума функции называются точками экстремума этой функции.

Теорема.(Необходимые условия экстремума). Пусть функция непрерывна в некоторой области вместе со своими первыми частными производными. Если во внутренней точке области функция имеет экстремум, то в этой точке обращаются в ноль все её частные производные первого порядка:

.

Эта точка называется критической точкой функции в области .

Теорема. (Достаточные условия экстремума).

Пусть в окрестности критической точки функция имеет непрерывные частные производные до второго порядка включительно. Рассмотрим выражение:

1) Если , то в точке функция имеет экстремум, если - максимум, если - минимум.

2) Если , то в точке функция ) не имеет экстремума

В случае если , вывод о наличии экстремума сделать нельзя.


mylektsii.ru - Мои Лекции - 2015-2018 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал