Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Стационарная теплопроводность через цилиндрическую стенку однослойную и многослойную.






1). Однородная цилиндрическая стенка. Рассмотрим однородный однослойный цилиндр длиной l, внутренним диаметром d1и внешним диаметром d2 (Рис.9.4). Температуры поверхностей стенки –tст1 и tст2. Уравнение теплопроводности по закону Фурье в цилиндрических координатах: Q = - λ ∙ 2∙ π ∙ r ·l· ∂ t / ∂ r (9.24)илиQ = 2·π ·λ ·l·Δ t/ln(d2/d1), (9.25)где: Δ t = tст1 – tст2 – температурный напор; λ – κ оэффициент теплопроводности стенки. Для цилиндрических поверхностей вводят понятия тепловой поток единицы длины цилиндрической поверхности (линейная плотность теплового потока), для которой расчетные формулы будут: ql = Q/l =2·π ·λ ·Δ t /ln(d2/d1), [Вт/м]. (9.26)Температура тела внутри стенки с координатойdх: tx = tст1 – (tст1 – tст2) ·ln(dx/d1) / ln(d2/d1). (9.27)2). Многослойная цилиндрическая стенка. Допустим цилиндрическая стенка состоит из трех плотно прилегающих слоев (Рис.9.5). Температура внутренней поверхности стенки –tст1, температуранаружнойповерхности стенки –tст2, коэффициенты теплопроводности слоев -λ 1, λ 2, λ 3, диаметры слоев d1, d2, d3, d4.

Тепловые потоки для слоев будут:

1-й слойQ = 2·π · λ 1·l·(tст1 – tсл1)/ ln(d2/d1), (9.28)

2-й слой Q = 2·π ·λ 2·l·(tсл1 – tсл2)/ ln(d3/d2), (9.29)

3-й слой Q = 2·π ·λ 3·l·(tсл2 – tст2)/ ln(d4/d3), (9.30)Решая полученные уравнения, получаем для теплового потока через многослойную стенку: Q = 2·π ·l·(tст1 – tст2) / [ln(d2/d1)/λ 1 + ln(d3/d2)/λ 2 + ln(d4/d3)/λ 3 ледующих уравнений: tсл1 = tст1 – ql·ln(d2/d1) 2·π ·λ 1. (9.33) tсл2 = tсл1 – ql·ln(d3/d2) / 2·π ·λ 2.


5 Граничные условия третьего рода (теплопередача). Передача теплоты из одной среды (жидкости или газа) к другой через разделяющую их однородную или многослойную твердую стенку любой формы называется теплопередачей. Теплопередача включает в себя теплоотдачу от более горячей жидкости к стенке, теплопроводность в стенке, теплоотдачу от стенки к более холодной среде. Рассмотрим теплопередачу через однородную и многослойную плоские стенки.

Пусть плоская однородная стенка имеет толщину δ (рис. 2.3). Заданы коэффициент теплопроводности стенки λ, температуры окружающей среды tf1 и tf2, а также коэффициенты теплоотдачи 1 и 2; будем считать, что величины tf1, tf2, 1 и 2 постоянны и не меняются вдоль поверхности. Это позволяет рассматривать изменение температуры жидкостей и стенки только в направлении, перпендикулярном плоскости стенки.

При заданных условиях необходимо найти тепловой поток от горячей жидкости к холодной и температуры на поверхности стенки. Плотность теплового потока от горячей жидкости к стенке определяется уравнением

При стационарном тепловом режиме та же плотность теплового потока, обусловленная теплопроводностью через твердую стенку - (2.19). Тот же тепловой поток передается от второй поверхности стенки к холодной жидкости за счет теплоотдачи - (2.20). Уравнения (2.18) - (2.20) можно собрать в систему (2.21). Если сложить равенства (2.21) почленно, то получим выражение из которого находим плотность теплового потока, Вт/м2 - (2.22). Если ввести обозначение (2.23) (единица измерения - Вт/м2× К), то уравнение (2.22) можно записать в виде (2.24). Величина k имеет ту же размерность, что и, и называется коэффициентом теплопередачи. Коэффициент теплопередачи k характеризует интенсивность передачи теплоты от одной жидкости к другой через разделяющую их стенку и численно равен количеству теплоты, которое передается через единицу поверхности стенки в единицу времени при разности температур между жидкостями в один градус.Величина, обратная коэффициенту теплопередачи, называется полным термическим сопротивлением теплопередачи - (2.25). Из (2.25) видно, что полное термическое сопротивление складывается из частных термических сопротивлений 1/1, δ /λ и 1/2, причем 1/1=R1 — термическое сопротивление теплоотдачи от горячей жидкости к поверхности стенки; δ /λ =Rс — термическое сопротивление теплопроводности стенки; 1/2=R2 — термическое сопротивление теплоотдачи от поверхности стенки к холодной жидкости.Поскольку общее термическое сопротивление состоит из частных термических сопротивлений, то совершенно очевидно, что для многослойной стенки нужно учитывать термическое сопротивление каждого слоя. Если стенка состоит из n слоев, то полное термическое сопротивление теплопередачи через такую стенку будет равно:


 

 

6 Выделим участок длиной L

T=f(r); t()=const;

При λ =const температура изменяется по логарифмическому закону

При %

Вт/м

Вт/м;

Многослойная цилиндрическая стенка

Для n слоёв


 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.