Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Дума Александр






13.

Вектор -отрезок, имеющий направление

Вектора называются компланарными, если принадлежат одной плоскости

Если начало и конец вектора совпадают, то такой вектор называется нулевым.

Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых

Два коллинеарных вектора называются сонаправленными, если их направления совпадают.
Два коллинеарных вектора называются противоположно направленными, если их направления противоположны.

Длиной(модулем) вектора называется расстояние между его началом и концом.

Вектор, длина которого равна единице, называется единичным вектором или ортом.

Векторы называются равными, если они лежат на одной прямой или параллельным прямых, их направления совпадают и длины равны.

Смешанным произведением векторов a, b и c называется число, равное
скалярному произведению векторного произведения векторов a и b на
вектор c. Смешанное произведение векторов a, b, c обозначается через a b c
или (a, b, c). Таким образом, a b c = (a × b)c.
Формулы вычисления смешанного произведения векторов

Смешанное произведение векторов равно определителю матрицы, составленной из этих векторов.

Смешанное произведение векторов a = {ax; ay; az}, b = {bx; by; bz} и c = {cx; cy; cz} в декартовой системе координат можно вычислить, используя следующую формулу:

a · [b × c] = ax ay az
bx by bz
cx cy cz


Свойства смешанного произведения векторов

  • Геометрический смысл смешанного произведения.

Модуль смешанного произведения трех векторов a, b ис равен объёму параллелепипеда, образованного этими векторами:

Vпарал = a · [b × c]

  • Геометрический смысл смешанного произведения.

Объем пирамиды образованной тремя векторами a, b ис равен одной шестой части от модуля смешанного произведения этих векторов:

Vпир =   |a · [b × c]|
 
  • Если смешанного произведения трех не нулевых векторов равно нулю, то эти вектора компланарные. Компланарными векторами называют те вектора, которые принадлежат одной или параллельным плоскостям

14.Беликова Валерия. Общее уравнение прямой.

Теорема

Всякое уравнение первой степени вида , где А, В и С – некоторые действительные числа, причем А и В одновременно не равны нулю, задает прямую линию в прямоугольной системе координат Oxy на плоскости, и любая прямая в прямоугольной системе координат Oxy на плоскости задается уравнением вида при некотором наборе значений A, B и C.

Доказательство.

Теорема состоит из двух частей. Докажем сначала, что уравнение вида задает прямую на плоскости.

Пусть координаты точки удовлетворяют уравнению , то есть, . Вычтем из левой и правой частей уравнения соответственно левую и правую части равенства , при этом получаем уравнение вида , которое эквивалентно .

Уравнение представляет собой необходимое и достаточное условие перпендикулярности двух векторов и . То есть, множество всех точек определяет в прямоугольной системе координат Oxy прямую линию, перпендикулярную направлению вектора . Если бы это было не так, то векторы и не были бы перпендикулярными и равенство не выполнялось бы.

 

Таким образом, уравнение

задает прямую линию в прямоугольной декартовой системе координат Oxy на плоскости, следовательно, эквивалентное ему уравнение вида задает эту же прямую. На этом первая часть теоремы доказана.

Теперь докажем, что всякая прямая в прямоугольной системе координат Oxy на плоскости определяется уравнением первой степени вида .

Пусть в прямоугольной системе координат Oxy на плоскости задана прямая a, проходящая через точку , - нормальный вектор прямой a, и пусть - плавающая точка этой прямой. Тогда векторы и перпендикулярны, следовательно, их скалярное произведение равно нулю, то есть, . Полученное равенство можно переписать в виде . Если принять , то получим уравнение , которое соответствует прямой a.

На этом доказательство теоремы завершено.

Уравнение вида есть общее уравнение прямой на плоскости в прямоугольной системе координат Oxy.

Из доказанной теоремы следует, что в фиксированной прямоугольной декартовой системе координат Oxy на плоскости прямая линия и ее общее уравнение прямой неразделимы. Иными словами, заданной прямой соответствует ее общее уравнение прямой, а этому общему уравнению прямой соответствует заданная прямая.

Из доказательства теоремы также видно, что коэффициенты А и В при переменных x и y являются соответствующими координатами нормального вектора прямой, заданной общим уравнением прямой вида .

Общее уравнение прямой называется полным, если все числа А, В и С отличны от нуля, в противном случае общее уравнение прямой называется неполным.

Рассмотрим все возможные варианты неполного общего уравнения прямой.

При общее уравнение прямой примет вид By+C=0. Это неполное общее уравнение прямой определяет в прямоугольной системе координат Oxy прямую параллельную оси Ох, так как при любых действительных значениях переменной х переменная y принимает одно и то же значение . Другими словами, общее уравнение прямой при определяет геометрическое место точек , ординаты которых равны одному и тому же числу .

При общее уравнение прямой примет вид y=0. Это общее неполное уравнение прямой определяет ось абсцисс Ox.

Аналогично, при имеем неполное общее уравнение прямой вида Ax+C=0. Это уравнение прямой параллельной оси ординат.

При имеем неполное общее уравнение прямой вида x=0 - уравнение координатной прямой Oy.

Если , то общее уравнение прямой примет вид . Это неполное общее уравнение прямой задает прямую, проходящую через начало координат. Действительно, пара чисел удовлетворяет равенству , так как .






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.