Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Уравнения, приводящиеся к однородным.




Кроме уравнений, описанных выше, существует класс уравнений, которые с помощью определенных подстановок могут приведены к однородным.

Это уравнения вида .

Если определитель то переменные могут быть разделены подстановкой

где a и b - решения системы уравнений

Пример. Решить уравнение

Получаем

Находим значение определителя .

Решаем систему уравнений

Применяем подстановку в исходное уравнение:

Заменяем переменную при подстановке в выражение, записанное выше, имеем:

Разделяем переменные:

Переходим теперь к первоначальной функции у и переменной х.

Итого, выражение является общим интегралом исходного дифференциального уравнения.

В случае если в исходном уравнении вида определитель то переменные могут быть разделены подстановкой

Пример. Решить уравнение

Получаем

Находим значение определителя

Применяем подстановку

Подставляем это выражение в исходное уравнение:

Разделяем переменные:

Далее возвращаемся к первоначальной функции у и переменной х.

таким образом, мы получили общий интеграл исходного дифференциального уравнения.


mylektsii.ru - Мои Лекции - 2015-2018 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал