Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Экстранормальная фонетика 47 страница






ЭЛЕКТРОННАЯ И ИОННАЯ ОПТИКА, наука о поведении пучков электронов и гонов в вакууме под воздействием электрич. и магнитных полей. Т. к. изучение электронных пучков началось ранее, чем ионных, и первые используют гораздо шире, чем вторые, весьма распространён термин " электронная оптика". Э. и и. о. занимается гл. обр. вопросами формирования, фокусировки и отклонения пучков зпряж. частиц, а также получения с их помощью изображений, к-рые можно визуализировать на люминесцирующих экранах или фотография, плёнках. Такие изображения принято наз. электроннооптич. и ионнооптич. изображениями. Развитие Э. и и. о. в значит, степени обусловлено потребностями электронной техники.

Зарождение Э. и и. о. связано с созданием в кон. 19 в. электроннолучевой трубки (ЭЛТ). В первой осциллография. ЭЛТ, изготовленной в 1897 К. Ф. Брауном, электронный пучок отклонялся магнитным полем. Отклонение с помощью электростатич. поля осуществил в своих опытах по определению отношения заряда электрона к его массе Дж. Дж. Томсон, пропуская пучок через плоский конденсатор, помещённый внутри ЭЛТ. В 1899 нем. физик И. Э. Вихерт применил для фокусировки электронного пучка в ЭЛТ катушку из изолированной проволоки, по к-рой протекал электрич. ток. Однако лишь в 1926 нем. учёный X. Буш теоретически рассмотрел движение заряж. частиц в магнитном поле такой катушки и показал, что она пригодна для получения правильных электроннооптич. изображений и, следовательно, является электронной линзой (ЭЛ). Последующая разработка электронных линз (магнитных и электростатических) открыла путь к созданию электронного микроскопа, электроннооптического преобразователя и ряда др. приборов, в к-рых формируются правильные электроннооптич. изображения объектов - либо испускающих электроны, либо тем или иным образом воздействующих на электронные пучки. Конструирование специализированных ЭЛТ для телевиз. и радиолокац. аппаратуры, для записи, хранения и воспроизведения информации и т. п. привело к
дальнейшему развитию разделов Э. и и. о., связанных с управлением пучками заряж. частиц. Значит, влияние на развитие Э. и и. о. оказала разработка аппаратуры для анализа потоков электронов И ионов (бета-спектрометров, массспектрометров и др. аналитич. приборов). В Э. и и. о., как правило, не рассматриваются вопросы, возникающие в сверхвысоких частот технике, лишь изредка рассматриваются процессы в электронных лампах, ускорителях заряженных частиц и др. приборах и устройствах, специфика к-рых отделяет их отосн. направлений Э. и и. о.

Для решения большинства задач Э. и и. о. достаточно рассматривать движение заряж. частиц в рамках классич. механики, т. к. волновая природа частиц (см. Корпускулярно-волновой дуализм) в этих задачах практически не проявляется. В таком приближении Э. и и. о. носит назв. геометрической Э. ии. о., что обусловлено наличием глубокой аналогии между геом. Э. и и. о. и геометрической оптикой световых лучей, к-рая выражается в том, что поведение пучков заряж. частиц в электрич. и магнитных полях во многом подобно поведению пучков лучей света в неоднородных оптич. средах. Качественно это подобие обнаруживается уже при сравнении рис. 1 и 2. В основе указанной аналогии лежит более общая аналогия между классич. механикой и световой геом. оптикой, установленная У. Р. Гамильтоном, доказавшим в 1834, что общее уравнение механики (уравнение Гамильтона - Якоби) по форме подобно оптич. уравнению эйконале. Как и в световой геом. оптике, в геом. Э. и и. о. вводится понятие преломления показателя, при вычислении погрешностей изображения - аберраций, 6. ч. к-рых аналогична аберрациям оптических систем, - зачастую используется метод эйконала. Когда приближение геом. Э. и и. о. недостаточно, напр, при исследовании разрешающей способности электронного микроскопа, привлекаются методы квантовой механики.

В электроннооптич. устройствах широко применяются электрич. и магнитные поля, обладающие симметрией вращения относительно оптич. оси системы. ЭЛ и электронные зеркала с такими полями наз. осесимметричным и. Электрич. поля с симметрией вращения создаются электродами в виде цилиндров, чашечек, диафрагм с круглыми отверстиями и т. п. (рис. 3). Для получения осеснмметричных магнитных полей используют электромагниты (иногда постоянные магниты) с полюсами в форме тел вращения или тороидальные катушки с намоткой из изолированной проволоки, по к-рой пропускается электрич. ток (рис. 4). Осесимметричные линзы и зеркала создают правильные электроннооптич. изображения, если заряж. частицы движутся достаточно близко к оси симметрии поля, а их нач. скорости мало отличаются друг от друга. Если эти условия не выполняются, погрешности изображения становятся весьма значительными. Когда предмет и изображение лежат за пределами поля, осесимметричные ЭЛ - всегда собирающие. В электростатич. осесимметричных ЭЛ, как и в светооптич. линзах со сферич. поверхностями, изображение может быть только прямым или перевёрнутым, в магнитных ЭЛ - оно дополнительно повёрнуто на нек-рый угол. Электроннооптич. свойства поля с симметрией вращения определяются положением его кардинальных точек, аналогичных кардинальным точкам осесимметричных светооптич. изображающих систем: двух фокусов, двух главных точек и двух узловых точек. Построение изображения производится по правилам световой геом. оптики. Электростатич. осесимметричным полям свойственны те же пять видов геом. аберраций третьего порядка, что и светооптическим центрированным системам сферич. поверхностей: сферическая аберрация, астигматизм, кривизна поля изображения, дисторсия и кома. В магнитных полях к ним добавляются ещё три: т. н. анизотропные дисторсия, астигматизм и кома. Кроме того, существуют три вида хроматич. аберраций (в электростатич. полях - два), обусловленных нек-рым неизбежным разбросом энергий поступающих в поле частиц. Вообще говоря, аберрации полей с симметрией вращения в сопоставимых условиях значительно превышают по величине аберрации светооптич. центрированных систем, т. е. ЭЛ и электронные зеркала по качеству существенно уступают светооптическим. Вопрос о компенсации аберраций или их уменьшений является одним из основных в теоретич. Э. и и. о.

Существуют и др. типы ЭЛ и зеркал, поля к-рых обладают различными видами симметрии. Они формируют изображения точечных объектов в виде отрезков линий, однако иногда способны осуществлять и стигматическую фокусировку (точка в точку). Т. н. цилиндрич. электростатич. и магнитные линзы и зеркала создают линейные изображения точечных предметов. Поля в таких ЭЛ " двумерны" (их напряжённости описываются функциями только двух декартовых координат) и симметричны относительно нек-рой средней плоскости, вблизи к-рой движутся заряж. частицы. В ряде аналитич. электровакуумных приборов высококачеств. фокусировка необходима только в одном направлении. В этих случаях целесообразно применять т. н. трансаксиальные электростатич. ЭЛ или трансаксиальные электронные зеркала, аберрации к-рых в средней плоскости очень малы (сравнимы с аберрациями светооптич. линз). Для воздействия на пучки заряж. частиц с большими энергиями используют квадрупольные ЭЛ (электрич. и магнитные). Для отклонения пучков заряж. частиц используют электроннооптич. устройства с электрич. или магнитными полями, направленными поперёк пучка. Простейшим электрич. отклоняющим элементом является плоский конденсатор (рис. 5). В ЭЛТ с целью уменьшения отклоняющего напряжения применяют системы с электродами более сложной формы. Магнитные поля, предназначенные для отклонения пучков, создаются электромагнитами (рис. 6) или проводниками, по к-рым течёт ток.

Очень разнообразны формы отклоняющих электрич. и магнитных полей, применяемых в аналитич. приборах, в к-рых используется свойство этих полей разделять (разрешать) заряж. частицы по энергии и массе. Широко используется также их свойство фокусировать пучки.

Электрич. поля обычно формируются различными конденсаторами: плоским, цилиндрич. (рис. 7), сферическим (рис. 8). Из магнитных полей часто применяются однородное поле (рис. 9) и секторное поле (рис. 10). Для улучшения качества фокусировки искривляют границы секторных магнитных полей, а также применяют неоднородные магнитные поля, напряжённость к-рых меняется по определ. закону.

Перечисленные отклоняющие электрич. и магнитные устройства, иногда наз. электронными (ионными) призмами, отличаются от светооптич. призм тем, что они не только отклоняют, но и фокусируют пучки заряж. частиц. Фокусировка приводит к тому, что попадающие в поля таких устройств параллельные пучки после отклонения перестают быть параллельными. Между тем для создания высококачеств. аналитич. электронных и ионных приборов по точной аналогии со светооптич. призменным спектрометром необходимы электронные (ионные) призмы, к-рые подобно световым призмам сохраняют параллельность пучков. В качестве таких электронных призм применяют телескопич. системы электронных линз. Добавив к электронной призме две ЭЛ, одну т. н. коллиматорную на входе, другую - фокусирующую на выходе, можно получить аналитич. прибор, в котором сочетаются высокая разрешающая способность и большая электроннооптич. светосила.

Лит.: Арцимович Л. А., Лукьянов С. Ю., Движение заряженных частиц в электрических и магнитных полях, М., 1972; Бонштедт Б. Э., Маркович М. Г., Фокусировка и отклонение пучков в электроннолучевых приборах, М., 1967; Брюхе Е., Шерцер О., Геометрическая электронная оптика, пер. с нем., Л., 1943; Г л а з е р В., Основы электронной оптики, пер. с нем., М., 1957; Гринберг Г. А., Избранные вопросы математической теории электрических и магнитных явлений, М.- Л., 1948; Зинченко Н. С., Курс лекций по электронной оптике, 2 изд., Хар., 1961; Ке л ь м а н В.М., Я в о р С. Я., Электронная оптика, 3 изд., Л., 1968; Страшкевич А. М., Электронная оптика электростатических систем, М.- Л., 1966; Явор С. Я., Фокусировка заряженных частиц квадрупольными линзами, М., 1968. В. М. Келъман, И. В. Родникова.

ЭЛЕКТРОННАЯ КАМЕРА, электронно-оптич. прибор для воспроизведения изображений объектов на фотоэмульсии (т. н. электронографич. пластинка), чувствительной к воздействию потока электронов. В астрономии Э. к. применяются в сочетании со светосильными телескопами, с помощью к-рых оптлч. изображение объекта проецируется на фотокатод камеры. Возникающий при этом поток фотоэлектронов проецируется с помощью той или иной электроннооптич. системы (электростатич., магнитной, электромагнитной или комбинированной; см. Электронная и ионная оптика) на электронографич. пластинку, где и фиксируется электронное изображение объекта, соответствующее его оптич. изображению на фотокатоде. Благодаря более эффективному, в сравнении с обычной фотографией, использованию светового потока, особенно в инфракрасной области спектра, Э. к. позволяют значительно сокращать выдержки, а в ряде случаев повышать проницающую силу телескопов.

Поскольку плотность изображения на эмульсии пропорциональна плотности падающего потока электронов, а последняя таким же образом зависит от освещённости фотокатода, то в характеристич. кривой Э. к. нет области недодержек, свойственной обычным фотографич. эмульсиям. Это обстоятельство, а также значит, способность электронографич. эмульсии к накоплению суммарного по времени воздействия электронов и её высокая разрешающая способность позволяют применять Э. к. для выявления слабых деталей спектров н структуры протяжённых небесных объектов.

Первая Э. к. для астрономич. целей была создана А. Лаллеманом (Франция) в 50-х гг. 20 в.

Лит.: Курс астрофизики и звездной астрономии, под ред. А. А. Михайлова, 3 изд., т. 1, М., 1973. Н. П. Ерпылёе.

ЭЛЕКТРОННАЯ КОНФИГУРАЦИЯ, см. в ст. Атом.

ЭЛЕКТРОННАЯ ЛАМПА, электровакуумный прибор, действие к-рого осн. на изменении потока электронов (отбираемых от катода и движущихся в вакууме) электрич. полем, формируемым с помощью электродов. В зависимости от значения выходной мощности Э. л. подразделяются на приёмно-усилителъные лампы (выходная мощность не св. 10 вm) и генераторные лампы (св. 10 вm).

Первые Э. л. (нач. 20 в.) - электровакуумные диоды и триоды - разрабатывались на основе техники производства ламп накаливания и по внешнему виду весьма Походили на последние: стеклянная колба, в центре к-рой размещалась вольфрамовая нить накала, служащая катодом (слово " лампа" в названии " Э. л." подчёркивало это сходство, " электронная" указывало на принципиальные различия). Уже в 30-е гг. внеш. вид Э. л. существенно изменился, однако слово " лампа" в её назв. сохранилось до сих пор. В 1-й пол. 20 в. Э, л. оказали решающее влияние на характер развития радиотехники. На их основе возникли радиосвязь, звуковое радиовещание, телевидение, радиолокация, вычислительная техника (ЭВМ 1-го поколения). За период 1921-41 ежегодный мировой выпуск Э. л. возрос с одного до сотен млн. штук. Однако успехи полупроводниковой электроники обусловили бесперспективность дальнейшей разработки радиоаппаратуры на приёмно-усилительных лампах. В 60-70-х гг. разработка такой аппаратуры была прекращена; в результате ежегоднвш мировой выпуск приёмно-усилит. ламп за 1960-75 уменьшился примерно в 3 раза. Успехи полупроводниковой электроники не повлияли на развитие генераторных ламп (поскольку выходная мощность полупроводниковых приборов на радиочастотах не превышает 10-100 em). Выпускаемые генераторные лампы (триоды и тетроды) характеризуются мощностью от 50 вт до 3 Мет в непрерывном режиме и до 10 Мвт в импульсном. При разработке новых типов генераторных ламп гл. внимание уделяется линейности сеточной характеристики (зависимости анодного тока Э. л. от напряжения на первой - управляющей - сетке; у совр. ламп искажения 3-го порядка снижены до - 45 дб); увеличению коэфф. усиления по мощности (до 25- 30 дб); повышению кпд (напр., у триодов с магнитной фокусировкой электронов, используемых для высокочастотного нагрева, он доведён до 90%); уменьшению сеточного тока и т. д.

Лит.: Власов В. Ф., Электронные и ионные приборы, 3 изд., М., 1960; И и н г с т Т. [и др.], Лампы большой мощности с сеточным управлением - 1972 г., пер. с англ., " Труды Института инженеров по электротехнике и радиоэлектронике", 1973, т. 61, № 3, с. 121-52; К л е й н е р Э. Ю., Основы теории электронных ламп, М., 1974. В. Ф. Коваленко.

ЭЛЕКТРОННАЯ МИКРОСКОПИЯ, совокупность методов исследования с помощью электронных микроскопов (МЭ) микроструктуры тел (вплоть до атомно-молекулярного уровня), их локального состава и локализованных на поверхностях или в микрообъёмах тел электрич. и магнитных полей (микрополей). Наряду с этим прикладным значением Э. м. является самостоят, науч. направлением, предмет и цели к-рого включают: усовершенствование и разработку новых МЭ и др. корпускулярных микроскопов (напр., протонного микроскопа) и приставок к ним: разработку методик препарирования образцов, исследуемых в МЭ; изучение механизмов формирования электроннооптич. изображений; разработку способов анализа разнообразной информации (не только изображений), получаемой с помощью МЭ.

Объекты исследований в Э. м.- б. ч. твёрдые тела. В просвечивающих МЭ (ПЭМ), в к-рых электроны с энергиями от 1 кэв до 5 Мэв проходят сквозь объект, изучаются образцы в виде тонких плёнок, фольги (рис. 1), срезов и т. п. толщиной от 1 н м до 10 мкм (от 10 А до 105 А). Поверхностную и приповерхностную структуру массивных тел с толщиной существенно больше 1 мкм исследуют с помощью непросвечивающих МЭ: растровых (РЭМ) (рис. 2), зеркальных, ионных проекторов и электронных проекторов.

Можно изучать порошки, микрокристаллы, частицы аэрозолей и т. д., нанесённые на подложку: тонкую плёнку для исследования в ПЭМ или массивную подложку для исследования в РЭМ. Поверхностная геом. структура массивных тел изучается и методом реплик: с поверхности такого тела снимается отпечаток в виде тонкой плёнки углерода, коллодия, формвара и др., повторяющий рельеф поверхности и рассматриваемый в ПЭМ. Обычно предварительно на реплику в вакууме напыляется под скользящим (малым к поверхности) углом слой сильно рассеивающего электроны тяжёлого металла (напр., Pt), оттеняющего выступы и впадины геом. рельефа. При исследовании методом т. н. декорирования не только геом. структуры поверхностей, но и микрополей, обусловленных наличием дислокаций (рис. 3), скоплений точечных дефектов (см. Дефекты в кристаллах), ступеней роста кри-сталлич. граней, доменной структуры (см. Домены) и т. д., на поверхность образца вначале напыляется очень тонкий слой декорирующих частиц (атомы Au, Pt и др., молекулы полупроводников или диэлектриков), осаждающихся преим. на участках сосредоточения микрополей, а затем снимается реплика с включениями декорирующих частиц.

Спец. газовые микрокамеры - приставки к ПЭМ или РЭМ - позволяют изучать жидкие и газообразные объекты, неустойчивые к воздействию высокого вакуума, в т. ч. влажные биол. препараты. Радиационное воздействие облучающего электронного пучка довольно велико, поэтому при исследовании биол., полупроводниковых, полимерных и т. п. объектов необходимо тщательно выбирать режим работы МЭ, обеспечивающий минимальную дозу облучения.

Наряду с исследованием статич., не меняющихся во времени объектов Э. м. даёт возможность изучать различные процессы в динамике их развития: рост плёнок, деформацию кристаллов под действием переменной нагрузки, изменение структуры под влиянием электронного или ионного облучения и т. д. (исследования " in situ"). Вследствие малой инерционности электрона можно исследовать периодич. во времени процессы, напр, перемагничивание тонких магнитных плёнок, переполяризацию сегнето-электриков, распространение ультразвуковых волн и т. д., методами стробоскопической Э. м.: электронный пучок " освещает" образец импульсами, синхронными с подачей импульсного напряжения на образец, что обеспечивает фиксацию на экране прибора определ. фазы процесса точно так же, как это происходит в светооптич. стробоскопических приборах (рис. 4). Предельное временное разрешение при этом может, в принципе, составлять ок. 10-15 сек для ПЭМ (практически реализовано разрешение ~10-10 сек для ПЭМ и РЭМ).

Для интерпретации изображений аморфных и др. тел (размеры частиц к-рых меньше разрешаемого в МЭ расстояния), рассеивающих электроны диффузно, используются простейшие методы а м п л и т у д н о и Э. м. Напр., в ПЭМ контраст изображения, т. е. перепад яркостей изображения соседних участков объекта, в первом приближении пропорционален перепаду толщин этих участков. Для расчёта контраста изображений кристаллич. тел (рис. 5), имеющих регулярные структуры (при рассеянии частиц на таких телах происходит дифракция частиц), и решения обратной задачи - расчёта структуры объекта по наблюдаемому изображению - привлекаются методы фазовой Э. м.: решается задача о дифракции электронной волны (см. Волны де Бройля) на кристаллич. решётке. При этом дополнительно учитываются неупругие взаимодействия электронов с объектом: рассеяние на плазмонах, фононах и т. п. В ПЭМ и растровых ПЭМ (ПРЭМ) высокого разрешения получают изображения отд. молекул или атомов тяжёлых элементов; пользуясь методами фазовой Э. м., восстанавливают по изображениям трёхмерную структуру кристаллов и биол. макромолекул. Для решения подобных задач применяют, в частности, методы голографии, а расчёты производят на ЭВМ.

Разновидность фазовой Э. м.- интерференционная Э. м., аналогичная оптич. интерферометрии (см. Интерферометр): электронный пучок расщепляется с помощью электронных призм, и в одном из плеч интерферометра устанавливается образец, изменяющий фазу проходящей сквозь него электронной волны. Этим методом можно измерить, напр., внутр. электрич. потенциал образца.

С помощью лоренцевой Э. м., в к-рой изучают явления, обусловленные Лоренца силой, исследуют внутр. магнитные и электрич. поля или внешние поля рассеяния, напр, поля магнитных доменов в тонких плёнках (рис. 6), сегнето-электрических доменов (см. Домены), поля головок для магнитной записи информации и т. п.

Состав объектов исследуется методами микродифракции, т. е. электронографии локальных участков объекта, рентгеновского и катодолюминесцентного спектрального микроанализа (см. Катодолюминесценция, Спектральный анализ рентгеновский): регистрируются характеристические рентгеновские спектры или катодолюминесцентное излучение, возникающее при бомбардировке образца сфокусированным пучком электронов (диаметр электронного " зонда" менее 1 мкм). Кроме того, изучаются энергетич. спектры вторичных электронов, выбитых первичным электронным пучком с поверхности или из объёма образца.

Интенсивно разрабатываются методы количеств. Э. м.- точное измерение различных параметров образца или исследуемого процесса, напр, измерение локальных электрич. потенциалов (рис. 7), магнитных полей (рис. 8), микрогеометрии поверхностного рельефа и т. д. МЭ используются и в технологич. целях (напр., для изготовления микросхем методом фотолитографии).

Лит.: X о к с П., Электронная оптика и электронная микроскопия, пер. с англ., М., 1974; Стоянова И. Г., А н а с к и н И. Ф., Физические основы методов просвечивающей электронной микроскопии, М., 1972; Утевский Л. М., Дифракционная электронная микроскопия в металловедении, М., 1973; Электронная микроскопия тонких кристаллов, пер. с англ., М., 1968; Спивак Г. В., Сапарнн Г. В., Быков М. В., Растровая электронная микроскопия, " Успехи физических наук", 1969, т. 99, в. 4; ВайнштейнБ. К,, Восстановление пространственной структуры биологических объектов по электронным микрофотографиям, " Изв. АН СССР. Сер. физическая", 1972, т. 36, № 9; Quantitative scanning electron microscopy, L. - N. " У.- S. F., 1974. A. E. Лукьянов.

Применение электронной микроскопии в биологии позволило изучить сверхтонкую структуру клеток и внеклеточных компонентов тканей. На основании результатов, полученных с помощью МЭ (макс, разрешение к-рых для биол. объектов 12-6А, а увеличения - до 800- 1200 тыс.), начиная с 40-х гг. было описано тонкое строение мембран, митохондрий, рибосом и др. клеточных, а также внеклеточных структур, выявлены нек-рые макромолекулы, напр. ДНК. Растровая (сканирующая) Э. м, даёт возможность изучать тонкое строение поверхности клеток и тканевых структур не только фиксированных объектов, но и живых животных с твёрдым хитиновым покровом, напр, ряда членистоногих. Техника приготовления биол. препаратов для Э. м. включает процедуры, сохраняющие ткань в условиях глубокого вакуума под пучком электронов и реализующие высокое разрешение МЭ. Обычно объекты фиксируют химич. реагентами (альдегидами, четырёхокисью осмия или др.), обезвоживают (спиртом, ацетоном), пропитывают эпоксидными смолами и режут на спец. микротомах на ультратонкие срезы (толщ. 100-600 А). Для повышения контраста изображения клеток их обрабатывают " электронными красителями", сильно рассеивающими электроны (уранилацетатом, гидроокисью свинца и др.). Чтобы уменьшить повреждающее действие фиксатора на ткань, её можно заморозить, вытесняя затем воду ацетоном или спиртом при низкой темп-ре. Иногда применяют методы, исключающие действие фиксатора на клетки, напр. лиофилизацию: ткань быстро охлаждают до -150 или -196 °С и обезвоживают в высоком вакууме при низкой темп-ре. Перспективным оказался метод замораживания с травлением, основанный на получении платино-углеродной реплики со скола замороженного объекта. Благодаря этому методу внесены существенные изменения в представления о структуре клеточных мембран. Для изучения структуры биол. макромолекул и отдельных клеточных органоидов используют негативное контрастирование образцов. В этом случае исследуемые объекты выявляются в виде электроннопрозрачных элементов на тёмном фоне. Полученные в МЭ изображения молекул можно анализировать, применяя методы, основанные на дифракции света. Использование высоковольтной Э. м. (до 3 Мв) позволяет получить сведения о 3-мерной структуре клеток. При подготовке к исследованию живых членистоногих их обездвиживают с помощью эфирного или хлороформного наркоза в дозах, не вызывающих последующей гибели, и помещают в вакуумную камеру МЭ. В современной Э. м. широко применяют методы цитохимии, включая авторадиографию. Илл. см. т. 12, табл. XXVIII (стр. 336-337). Применение Э. м. в биологии существенно изменило и углубило прежние представления о тонком строении клетки.

Лит.: Киселев Н. А., Электронная микроскопия биологических макромолекул, М., 1965; Электронно-микроскопическая анатомия, пер. с англ., М., 1967; Балашов Ю. С., Миккау Н. Е., Изучение живых животных в растровом электронном микроскопе, " Природа", 1977, № 1; Tribe М. А., Е г a u t М. R., S n о о k R. К., Basic biology course, book 2 - Electron mic-roscop_y and cell structure, Camb,, 1975; Electron microscopy of enzymes. Principles and methods, v. 1-2, N. Y., 1973-74.

Н. А. Старосветская, Я. Ю. Комиссарчик.

ЭЛЕКТРОННАЯ МУЗЫКА, музыка, создаваемая с помощью генераторов низкой (звуковой) частоты, электрич. колебания к-рых записываются на магнитную ленту и воспроизводятся на магнитофоне. Одна из важных особенностей Э. м. состоит в том, что в ней отсутствует исполнитель в традиц. понимании, т. е. как необходимый посредник между композитором и слушателем. Осн. операции при сочинении Э. м.- поиски и отбор звучаний, запись их на магнитную ленту, обработка (деформация, модификация, трансформация), композиц. оформление. Получаемые при воспроизведении звуки могут комбинироваться со звуками электроинструментов (музыка для к-рых не относится к собственно Э. м.), певч. голосов, традиц. инструментов. В Э. м. используются т. н. синусоидные тоны (отличаются от обычных муз. звуков отсутствием обертонов и представляют собой звуки определённой высоты, лишённые тембровой окраски), а также звуки переменной и неопределённой высоты (микротоны). Понятие Э. м. введено ок. 1950 нем. физиком В, Майер-Эплером. Э. м. создаётся в спец. студиях (первая такая студия организована в 1951 в Кёльне по инициативе инж. X. Эймерта, комп. К. Штокхаузена и др.; подобная студия в Москве, основанная Е. А. Мурзиным, существует с 1967). К созданию Э. м. обращались Эймерт, Штокхаузен, сов. композиторы Э. В. Денисов, С. А. Губайдулина, А. Г. Шнитке, Э. Н. Артемьев и др. Э. м. применяется для создания особых звуковых эффектов в муз. сопровождении к фильмам, спектаклям, радиопередачам. Ю. Н. Холопов.

ЭЛЕКТРОННАЯ ОПТИКА, теория формирования потоков электронов и управления ими с помощью электрич. и магнитных полей, а также совокупность приборов и методов исследования, основанных на использовании таких потоков. Подробнее см. в ст. Электронная и ионная оптика.

ЭЛЕКТРОННАЯ ПРОМЫШЛЕННОСТЬ, отрасль промышленности, производящая электронные приборы (полупроводниковые, электровакуумные, пьезо-кварцевые приборы, изделия квантовой, криогенной и оптоэлектроники, интег
ральной оптики), резисторы, конденсаторы, штепсельные разъёмы и др. радиокомпоненты, специальное технологическое оборудование и аппаратуру (см. также Электроника); одна из отраслей, определяющих научно-технический прогресс.

Начало пром. произ-ва отд. видов электронных приборов относится к 1920-м гг. Ещё в 20-30-е гг. СССР имел приоритет в области создания и пром. выпуска новых типов электронных приборов: сверхвысокочастотных приборов, электроннолучевых трубок, фотоэлектронных умножителей и др. Бурное развитие Э. п. получила после 2-й мировой войны 1939 - 1945. Продукция Э. п. используется в различных областях науки и техники (космонавтика, радиофизика, кибернетика, вычислит, техника, связь, медицина и др.), при создании совр. систем управления, радиотехнич. устройств, приборов и средств автоматизации в пром-сти, с. х-ве, на транспорте и для оборонных целей.

В 1961 был создан Гос. к-т Сов. Мин. СССР по электронной технике, а в 1965 - Мин-во электронной промышленности СССР.

Э. п.- отрасль, отличающаяся высоким уровнем концентрации произ-ва, специализации и кооперирования, комплексностью развития. Крупные специализир. предприятия Э. п. выпускают широкую номенклатуру электронных изделий. Существ, роль в развитии специализации и кооперирования произ-ва играют создание типовых параметрич. рядов важнейших изделий электронной техники, разработка базовых прогрессивных конструкций и технологич. процессов, комплексная стандартизация. С развитием совр. направлений в электронике коренным образом изменилась технология изготовления электронных приборов. Традиц. приёмы обработки материалов вытесняются технологич. процессами, осн. на применении фотолитографии, электроннолучевой, плазменной и плазмохимич. обработке, диффузии, ионной имплантации. Осн. особенность применяемых в отрасли исходных материалов - их сверхвысокая чистота, т. к. наличие примесей определяет технич. и эксплуатац. характеристики электронных приборов.

Э. п. характеризуется быстрым ростом объёмов произ-ва, расширением номенклатуры полупроводниковых (особенно интегральных схем), квантовых, криоэлектронных приборов, а также приборов, осн. на акусто- и магнитоэлектронике; быстро расширяется произ-во микро-ЭВМ, цветных кинескопов, электронных калькуляторов, в т. ч. программируемых, видеомагнитофонов, электронных часов, стереосистем высшего класса, СВЧ-печей и др.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.