Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Экстранормальная фонетика 37 страница






Тихий разряд наблюдается при давлении газа порядка атмосферного. Внеш. ионизаторами могут быть: естеств. радиоактивное излучение, космические лучи, потоки фотонов (сильное световое облучение), пучки быстрых электронов и т. д. Ионизаторы двух последних типов используются (преим. в импульсном режиме) в газовых лазерах.

Переход несамостоят. Э. р. в г. в самостоятельный характеризуется резким усилением электрич. тока (точка Е на кривой рис. 1) и наз. электрическим пробоем газа. Соответствующее напряжение Uз наз. напряжением зажигания (см. Зажигания потенциал). В случае однородного поля оно зависит от сорта газа и от произведения давления газа р на расстояние между электродами d (см. рис. 2 и ст. Пашена закон). Разряд после лавинного пробоя принимает форму тлеющего разряда, если давление газа низ-

ко (неск. мм рт. ст.). При более высоком давлении (напр., при атмосферном) лавинное усиление Э. р. в г. приводит к возникновению электрич. пространственного заряда, что меняет характер процесса пробоя. Образуется один или неск. узких проводящих (заполненных плазмой) каналов, исходящих от одного из электродов. Такие каналы наз. стримерами. Время образования стримеров очень мало (ок. 10-7 сек).

После короткого переходного процесса самостоят, газовый разряд становится стационарным. Обычно такой разряд осуществляют в закрытом изолирующем сосуде (стеклянном или керамическом). Ток в газе течёт между двумя электродами: отрицательным катодом и положительным анодом.

Одним из осн. типов газового разряда, формирующимся, как правило, при низком давлении и малом токе (участок в на рис. 3), является тлеющий разряд. Главные четыре области разрядного пространства, характерные для тлеющего разряда, это: 1 - катодное тёмное пространство; 2 - тлеющее свечение; 3 - фарадеево тёмное пространство; 4 - положительный столб. Области /- 3 находятся вблизи катода и образуют катодную часть разряда, в к-рой происходит резкое падение потенциала (катодное падение), связанное с большой концентрацией положит, ионов на границе областей /- 2. В области 2 электроны, ускоренные в области /, производят интенсивную ударную ионизацию. Тлеющее свечение обусловлено рекомбинацией ионов и электронов в нейтральные атомы или молекулы. Для положит, столба разряда вследствие постоянной и большой концентрации электронов характерны незначит. падение потенциала в нём, свечение, вызываемое возвращением возбуждённых молекул (атомов) газа в основное состояние (состояние с наинизшей возможной энергией), и большая электропроводность.

Стационарность в положит, столбе объясняется взаимной компенсацией процессов образования и потерь заряженных частиц. Образование таких частиц происходит при ионизации атомов и молекул в результате столкновений с ними электронов. К потерям заряженных частиц приводит амбиполярная диффузия к стенке сосуда, ограничивающего разрядный объём, и следующая за этим рекомбинация. Диффузионные потоки, направленные не к стенке, а вдоль разрядного тока, часто ведут к образованию в положит, столбе своеобразных " слоев" (обычно движущихся).

При увеличении разрядного тока обычный тлеющий разряд становится аномальным (рис. 3) и начинается стягивание (контракция) положит, столба. Столб отрывается от стенок сосуда, в нём начинает происходить дополнит, процесс потери заряженных частиц (рекомбинация в объёме). Предпосылкой этого является высокая плотность заряженных частиц. При дальнейшем повышении разрядного тока газ нагревается настолько, что становится возможной его термическая ионизация. Столкновения между атомами или молекулами в этом случае столь сильны, что происходит отщепление электронов. Такой разряд наз. дуговым разрядом. С возрастанием тока электропроводность столба повышается, вольтамперная характеристика дугового разряда приобретает падающий характер (рис. 3). Следует отметить, что хотя он может " гореть" в широком диапазоне давлений газа и иных условий, в большинстве случаев дуговой разряд наблюдается при давлении порядка атмосферного. Во всех случаях особую важность представляет участок перехода между столбом разряда и электродами, причём ситуация у катода сложнее, чем у анода. При тлеющем разряде непрерывная связь между катодом и положит, столбом обеспечивается за счёт сильного катодного падения. В самостоят, дуговом разряде в результате сильного локального нагрева катода появляются т. н. катодные пятна. В них обычно происходит термоэлектронная эмиссия или более сложная эмиссия электронов из облака испаряющегося материала катода. Процесс эмиссии из катода дугового разряда в наст, время (1978) ещё не до конца понят и интенсивно исследуется.

Все рассмотренные выше Э. р. в г. происходят под действием постоянного электрич. напряжения. Однако газовые разряды могут протекать и под действием переменного электрич. напряжения. Такие разряды имеют стационарный характер, если частота переменного напряжения достаточно высока (или, наоборот, настолько низка, что полупериод переменного напряжения во много раз больше времени установления разряда, так что каждый электрод просто попеременно служит катодом и анодом). Типичным примером может служить высокочастотный (ВЧ) Э. р. в г. ВЧ-разряд может " гореть" даже при отсутствии электродов (безэлектродный разряд). Переменное электрическое поле создаёт в определённом объёме плазму и сообщает электронам энергию, достаточную для того, чтобы производимая ими ионизация восполняла потери заряж. частиц вследствие диффузии и рекомбинации. Внеш. вид и характеристики ВЧ-разрядов зависят от рода газа, его давления, частоты переменного поля и подводимой мощности. Элементарные процессы на поверхности твёрдого тела (металла или изолятора разрядной камеры) играют определённую роль только в процессе " поджига" разряда. Стационарный ВЧ-разряд подобен положит, столбу тлеющего разряда. Кроме стационарных разрядов, осн. характеристики к-рых не зависят от времени, существуют нестационарные (импульсные) Э. р. в г. Они возникают по б. ч. в сильно неоднородных или переменных во времени полях, напр, у заострённых и искривлённых поверхностей проводников и электродов. Величина напряжённости поля и степень его неоднородности вблизи таких тел столь велики, что происходит ударная ионизация электронами молекул газа. Два важных типа нестационарного разряда - коронный разряд и искровой разряд.

При коронном разряде ионизация не приводит к пробою, потому что сильная неоднородность электрич. поля, обусловливающая её, существует только в непо-средств. близости от проводов и остриёв. Коронный разряд представляет собой многократно повторяющийся процесс под-жига, к-рый распространяется на ограниченное расстояние от проводника - до области, где напряжённость поля уже недостаточна для поддержания разряда. Искровой разряд, в отличие от коронного, приводит к пробою. Этот Э. р. в г. имеет вид прерывистых ярких зигзагообразных разветвляющихся, заполненных ионизованным газом (плазмой), нитей-каналов, к-рые пронизывают промежуток между электродами и исчезают, сменяясь новыми. Искровой разряд сопровождается выделением большого количества тепла и ярким свечением. Он проходит следующие стадии: резкое умножение числа электронов в сильно неоднородном поле близ проводника (электрода) в результате последоват. актов ионизации, начинаемых немногими, случайно возникшими свободными электронами; образование электронных лавин; переход лавин в стримеры под действием пространственного заряда, когда плотность заряженных частиц в головной части каждой лавины превысит нек-рую критическую. Совместное действие пространств, заряда, ионизующих электронов и фотонов в " головке" стримера приводит к увеличению скорости развития разряда. Примером естеств. искрового разряда является молния, длина к-рой может достигать неск. км, а макс, сила тока - неск. сотен тысяч ампер.

К наст, времени (1970-е гг.) все виды Э. р. в г. исследуются и применяются во мн. областях науки и техники. Тлеющий, дуговой и импульсные разряды используются при возбуждении газовых лазеров. Плазматроны, в к-рых осн. рабочим процессом служит дуговой или ВЧ-разряд, являются важными устройствами, в ряде областей техники, в частностиприполучении особо чистых полупроводников и металлов. Мощные, плазматроны используются в качестве реакторов в плазмохимии. На применении искрового разряда основаны прецизионные методы электроискровой обработки. При фокусировке лазерного светового излучения происходит пробой воздуха в фокусе и возникает безэлектродный разряд (подобный ВЧ-разряду в искре), наз. лазерной искрой. Мощные, сильноточные разряды в водороде служили первыми шагами на пути к управляемому термоядерному синтезу.

В системе естеств. наук изучение Э. р. в г. занимает место в физике плазмы. При Э. р. в г. образуется низкотемпературная плазма, для к-рой характерна малая степень ионизации. В отличие от высокотемпературной (полностью ионизованной) плазмы, в низкотемпературной плазме атомы или молекулы нейтрального газа играют важную роль. Электроны, ионы и нейтральные частицы " мягко" взаимодействуют. Вследствие этого может возникнуть термодинамически неравновесная ситуация, при к-рой электроны, ионы и нейтральный газ имеют разные темп-ры. Эта ситуация ещё более усложняется, если в балансе энергии Э. р. в г. нельзя пренебречь световым излучением (напр., в сильноточных дуговых разрядах). В таких случаях низкотемпературную плазму необходимо описывать с помощью кинетич. теории плазмы.

Лит.: Э н г е л ь А., Ш т е н б е к М., Физика и техника электрического разряда в газах, пер. с нем., т. 1 - 2, М.- Л., 1935 - 1936; Грановский В. Л., Электрический ток в газе. Установившийся ток, М., 1971; К а п ц о в Н. А., Электроника, 2 изд., М., 1956; Мик Д ж. М., Крэгс Д ж., Электрический пробой в газах, пер. с англ., М., 1960; Браун С., Элементарные процессы в плазме газового разряда, [пер. с англ.], М., 1961; Физика и техника низкотемпературной плазмы, под ред. С. В. Дресвина, М., 1972; Р а и з е р Ю. П., Лазерная искра и распространение разрядов, М., 1974. М. Штеенбек, Л. Ротхардт (ГДР).

ЭЛЕКТРИЧЕСКИЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ЭРД), ракетный двигатель (РД), в к-ром в качестве источника энергии для создания тяги используется электрич. энергия бортовой энергоустановки космич. летательного аппарата (обычно солнечные или аккумуляторные батареи). Достоинство ЭРД - в их высоком удельном импульсе (удельной тяге) благодаря большой скорости истечения рабочего тела (РТ), достигающей 10- 100 км/сек. По удельному импульсу ЭРД многократно превосходят химические ракетные двигатели, у к-рых скорость истечения РТ не превышает 4, 5 км/сек. По принципу действия ЭРД подразделяются на электротермич., элек-тростатич. (ионные, коллоидные) и электромагнитные (плазменные).

В электротермич. РД электрич. энергия используется для нагрева РТ с целью обращения его в газ с темп-рой 1000- 5000 К; газ, истекая из реактивного сопла (аналогичного соплу хим. РД), создаёт тягу. В качестве РТ используются вещества с малой мол. массой (напр., водород, аммиак, гидразин), нагреваемые при помощи поверхностных нагревателей (рис. 1), дугового разряда (рис. 2) или (в экспериментальных ЭРД) высокочастотного электромагнитного поля. Удельный импульс электротермич. РД составляет 1, 5-10 (кн-сек)/кг, плотность тяги (отношение тяги к поперечному сечению реактивной струи) 0, 3-3 Мн/м2, время работы от неск. ч до неск. сотен ч.

В электростатич. (ионном) РД вначале производится ионизация РТ, после чего ионы и электроны раздельно ускоряются в электростатич. поле (при помощи системы электродов), а затем вновь перемешиваются для нейтрализации объёмного заряда и, истекая, создают тягу (рис. 3). Различают электростатич. РД с поверхностной ионизацией и объёмной ионизацией (электронным ударом); в качестве РТ в первых используется легко ионизируемый цезий, во вторых - любые вещества с большой атомной массой (напр., висмут). Вместо ионов в электростатич. РД могут ускоряться заряженные (напр., за счёт контактной разности потенциалов при отрыве капли от поверхности электрода) микроскопич. капли. Такие ЭРД наз. коллоидными. Значение ускоряющего потенциала составляет для них ок. 10-20 кв (для ионных РД - 2-7 кв) при плотности тока в неск. ма/см2. Удельный импульс электростатич. РД 15-100 (кн-сек)1кг, плотность тяги 30-50 н/м2, время работы - 1 год и более.

В электромагнитном РД рабочим телом является плазма любого вещества, ускоряемая за счёт силы Ампера в скрещённых электрич. и магнитном полях. Различают ЭРД с внеш. и собств. магнитным полем. К первым относятся классич. Е-Н ускорители плазмы и т. н. холлов-ские ЭРД с замкнутым дрейфом электронов; во-вторых, магнитное поле создаётся током, протекающим в ускоряемой плазме; они подразделяются на импульсные и квазистационарные ЭРД. Рабочий цикл импульсного ЭРД соответствует периоду электрич. пробоя РТ (обычно фторопласта), при к-ром создаётся плазма; нач. потенциал пробоя - неск. кв, удельный импульс 40-100 (кн-сек)/кг, плотность тяги 10-9-10-8 н/м3, число циклов ЭРД достигает 1 млн. В квазистационарном ЭРД с целью создания сильного магнитного поля через РТ пропускается ток силой в десятки ка и напряжением в десятки в. Удельный импульс составляет 30-50 (кн-сек)/кг, плотность тяги неск. кн/м2, время работы - десятки ч. О типах плазменных ЭРД и методах создания плазмы в них см. в ст. Плазменные ускорители.

Ограниченное применение ЭРД связано с необходимостью большого расхода электроэнергии (10-100 квт на 1 и тяги). Из-за наличия бортовой энергоустановки (и др. вспомогат. систем), а также из-за малой плотности тяги аппарат с ЭРД имеет малое ускорение. Поэтому ЭРД могут быть использованы только в космич. легат. аппаратах (КЛА), совершающих полёт либо в условиях слабых гравитац. полей, либо на околопланетных орбитах. Они применяются для ориентации, коррекции орбит КЛА и др. операций, не требующих больших затрат энергии. Электростатич., плазменные холловские и др. ЭРД рассматриваются как перспективные в качестве основных двигателей КЛА. Из-за малой отбрасываемой массы РТ время непрерывной работы таких ЭРД будет измеряться месяцами и годами; их использование вместо существующих хим. РД позволит увеличить массу полезного груза КЛА.

Идея использования электрич. энергии для получения тяги выдвигалась ещё К. Э. Циолковским и др. пионерами космонавтики. В 1916-17 Р. Годдард (США) подтвердил опытами реальность этой идеи. В 1929-33 В. П. Глушко (СССР) создал экспериментальный ЭРД. В 1964 в СССР на КЛА типа " Зонд" испытаны плазменные импульсные РД, в 1966-71 на КЛА " Янтарь" -ионные РД, в 1972 на КЛА " Метеор" - плазменные квазистационарные РД. Различные типы ЭРД испытаны начиная с 1964 в США: в баллистическом, а затем в космич. полёте (на аппаратах АТС, СЕРТ-2 и др.). Работы в этой области ведутся также в Великобритании, Франции, ФРГ, Японии.

Лит.: Корлисс У. Р., Ракетные двигатели для космических полетов, пер. с англ., М., 1962; ШтулингерЭ., Ионные двигатели для'космических полетов, пер. с англ., М., 1966; Г и л ь з и н К. А., Электрические межпланетные корабли, 2 изд., М., 1970; Гуров А. Ф., С ев рук Д. Д., С у р н о в Д. Н., Конструкция и расчет на прочность космических электроракетных двигателей, М., 1970; Фаворский О. Н., Ф и ш г о и т В. В., Я н т о в с к и и Е. И., Основы теории космических электрореактивных двигательных установок, М., 1970; Гришин С. Д., Л е с к о в Л. В., К о з л о в Н. П.. Электрические ракетные двигатели, М., 1975. Ю. М. Трушин.

ЭЛЕКТРИЧЕСКИЙ COM (Malapteru-rus electricus), рыба подотряда сомовидных. Дл. тела 20-65 см, иногда до 1 м. Спинного плавника нет, есть жировой; брюшные плавники на середине тела, грудные не имеют колючек. 3 пары усиков. Глаза маленькие, светятся в темноте. Жаберная щель очень узкая, нёбные зубы отсутствуют. Есть электрические органы. Э. с. малоподвижен, всеяден. Условия размножения плохо изучены. Обитает в Ниле и нек-рых др. реках тропич. Африки. Разводится в аквариумах. Мясо Э. с. употребляют в пищу.

Лит.: Жизнь животных, т. 4, ч. 1, М., 1971.

ЭЛЕКТРИЧЕСКИЙ СТУЛ, специально оборудованное кресло для приведения в исполнение приговора о смертной казни путём использования электрич. тока высокого напряжения. Применяется в 24 штатах США, а также на Филиппинах. В США казнь на Э. с. введена в 1889 как якобы " наиболее человечный и лёгкий способ казни". Впервые применена 6 авг. „1890 в Обернской тюрьме штата Нью-Йорк. Утверждения о безболезненности и мгновенности наступления смерти, а тем самым и " гуманности" этого вида казни не соответствуют действительности.

ЭЛЕКТРИЧЕСКИЙ ТОК, упорядоченное (направленное) движение электрически заряженных частиц или заряженных макроскопич. тел. За направление тока принимают направление движения положительно заряженных частиц; если ток создаётся отрицательно заряженными частицами (напр., электронами), то направление тока считают противоположным направлению движения частиц.

Различают Э. т. проводимости, связанный с движением заряженных частиц относительно той или иной среды (т. е. внутри макроскопич. тел), и конвекционный ток - движение макроскопич. заряженных тел как целого (напр., заряженных капель дождя).

О наличии Э. т. в проводниках можно судить по тем действиям, к-рые он производит: нагреванию проводников, изменению их хим. состава, созданию магнитного поля. Магнитное действие тока проявляется у всех без исключения проводников; в сверхпроводниках не происходит выделения теплоты, а хим. действие тока наблюдается преимущественно в электролитах. Магнитное поле порождается не только током проводимости или конвекционным током, но и переменным электрическим полем в диэлектриках и вакууме. Величину, пропорциональную скорости изменения электрического поля, во времени, Дж. К.

Максвелл назвал током смещения. Ток смещения входит в Максвелла уравнения на равных правах с током, обусловленным движением зарядов. Поэтому полный Э. т., равный сумме тока проводимости и тока смещения, может быть определён как величина, от к-рой зависит интенсивность магнитного поля. Количественно Э. т. характеризуется скалярной величиной - силой тока I и векторной величиной - плотностью электрического тока j. При равномерном распределении плотности тока по сечению проводника сила тока 1 - jS = q0nvS, где qo - заряд частицы, п - концентрация частиц (число частиц в единице объёма), v - ср. скорость направленного движения частиц, S - площадь поперечного сечения проводника.

Для возникновения и существования Э. т. необходимо наличие свободных заряженных частиц (т. е. положительно или отрицательно заряженных частиц, не связанных в единую электрически нейтральную систему) и силы, создающей и поддерживающей их упорядоченное движение. Обычно силой, вызывающей такое движение, является сила со стороны электрич. поля внутри проводника, к-рое определяется электрическим напряжением на концах проводника. Если напряжение не меняется во времени, то в проводнике устанавливается постоянный ток, если меняется, - переменный ток.

Важнейшей характеристикой проводника является зависимость силы тока от напряжения - вольтамперная характеристика. Она имеет простейший вид для металлич. проводников и электролитов: сила тока прямо пропорциональна напряжению (Ома закон).

В зависимости от способности веществ проводить Э. т. они делятся на проводники, диэлектрики и полупроводники, В проводниках имеется очень много свободных заряженных частиц, а в диэлектриках - очень мало. Поэтому сила тока в диэлектриках крайне мала даже при больших напряжениях, и они служат хорошими изоляторами. Промежуточную группу составляют полупроводники.

В металлах свободными заряженными частицами - носителями тока являются электроны проводимости, концентрация к-рых практически не зависит от темп-ры и составляет 1022-1023 см-3. Их совокупность можно рассматривать как " электронный газ". Электронный газ в металлах находится в состоянии вырождения (см. Вырожденный газ), т. е. в нём отчётливо проявляются квантовые свойства. Квантовая теория металлов (см. Твёрдое тело) объясняет зависимость электрич. сопротивления металлов от темп-ры (линейное увеличение с ростом темп-ры) и прямую пропорциональность между силой тока и напряжением (см. Металлы).

В электролитах Э. т. обусловлен направленным движением положит, и отрицат. ионов. Ионы образуются в электролитах в результате электролитической диссоциации. С ростом темп-ры число молекул растворённого вещества, распадающихся на ионы, увеличивается и сопротивление электролитов падает. При прохождении тока через электролит ионы подходят к электродам и нейтрализуются. Масса выделившегося на электродах вещества определяется законами электролиза Фарадея.

Газы из нейтральных молекул являются диэлектриками. Э. т. проводят лишь ионизованные газы - плазма. Носителями тока в плазме служат положит, и отрицат. ионы (как в электролитах) и свободные электроны (как в металлах). Ионы и свободные электроны образуются в газе в результате сильного нагревания или внеш. воздействий {ультрафиолетового излучения, рентгеновских лучей, при соударениях быстрых электронов с нейтральными атомами или молекулами и т. д.; см. Ионизация).

Э. т. в электровакуумных приборах (электронных лампах, электроннолучевых трубках и т. д.) создаётся потоками электронов, испускаемых нагретым электродом - катодом (см. Термоэлектронная эмиссия). Электроны ускоряются электрич. полем и достигают другого электрода - анода.

В полупроводниках носителями тока являются электроны и дырки.

Лит.: Т а м м И. Е., Основы теории электричества, 9 изд., М., 1976, гл. 3, 6; К а-л а ш н и к о в С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики), гл. 6, 14-16, 18. Г. Я. Мякишев.

ЭЛЕКТРИЧЕСКИЙ УГОРЬ (Electrophorus electricus), рыба сем. Electrophoridae отряда карпообразных. Обитает в пресных водах Центр, и Юж. Америки.

Тело голое, дл. до 3 м. Весит до 40 кг. Вдоль боков расположены электрические органы. Спинных и брюшных плавников нет. Анальное отверстие на горле; анальный плавник служит органом движения. Питается Э. у. мелкой рыбой. Размножение не изучено. Мясо Э. у. употребляют в пищу.

Лит.: Жизнь животных, т. 4, ч. 1, М., 1971.

ЭЛЕКТРИЧЕСКИЙ ФИЛЬТР, электрич. устройство, в к-ром из спектра поданных на его вход электрич. колебаний выделяются (пропускаются на выход) составляющие, расположенные в заданной области частот, и не пропускаются все остальные составляющие. Э. ф. используются в системах многоканальной связи, радиоустройствах, устройствах автоматики, телемеханики, радиоизмерит. техники и т. д.- везде, где передаются электрич. сигналы при наличии др. (мешающих) сигналов и шумов, отличающихся от первых по частотному составу; они применяются также в выпрямителях тока для сглаживания пульсаций выпрямленного тока. Область частот, в к-рой лежат составляющие, пропускаемые (задерживаемые) Э. ф., наз. полосой пропускания (полосой задерживани я). Фильтрующие свойства Э. ф. количественно определяются относит, величиной вносимого им затухания в составляющие спектра электрич. колебаний: чем больше различие затуханий в полосе задерживания и полосе пропускания, тем сильнее выражены его фильтрующие свойства. По виду кривой зависимости затухания от частоты (по взаимному расположению полос пропускания и задерживания) различают Э. ф.: нижних частот (ФНЧ), пропускающие колебания с частотами не выше нек-рой граничной fB и задерживающие колебания с частотами выше fB; верхних частот (ФВЧ), в к-рых, наоборот, пропускаются колебания с частотами выше нек-рой fH и подавляются колебания ниже этой границы; полосно-пропускающие (ППФ), или полосовые, выделяющие колебания только в конечном интервале частот от fB до fu; полосно-задерживающие (ПЗФ), иначе режекторные фильтры, обратные ППФ по своим частотным характеристикам.

Конструкция Э. ф., технология их изготовления, а также принцип действия определяются прежде всего рабочим диапазоном частот и требуемым видом частотной характеристики. В диапазоне от единиц кгц до десятков Мгц (в отд. случаях - до единиц Ггц) получили распространение LC-фильтры (рис. 1, а, в, г), содержащие дискретные элементы - катушки индуктивности и электрич. конденсаторы; в диапазоне от долей гц до сотен кгц наиболее часто используют пассивные или активные КС-фильтры (рис. 1, б), выполненные на основе резисторов и конденсаторов (активный, кроме того, содержит усилитель электрических колебаний). Действие LC- и КС-фильтров основано на использовании зависимости сопротивления реактивного (ёмкостного и индуктивного) от частоты переменного тока. Для фильтрации сигналов, частота к-рых составляет доли гц, служат электротепловые фильтры (ЭТФ), конструктивно представляющие собой стержень с источником тепла и термоэлектрич. преобразователем; введение в ЭТФ усилителей с обратной связью позволяет реализовать электротепловые ФВЧ и ППФ. Известны также электромеханич. фильтры, выполненные на основе дисковых, цилиндрич., пластинчатых, гантельных и камертонных резонаторов. В таких Э. ф. используется явление механич. резонанса; применяются в диапазоне от неск. кгц до 1 Мгц. Высокими фильтрующими свойствами обладают пьезоэлектрич. ППФ и ПЗФ, материалом для изготовления к-рых служит пьезокварц или пьезоэлектрическая керамика (см. также Пьезоэлектричество). Таковы, напр., пьезокварцевые фильтры на дискретных элементах - кварцевых резонаторах в сочетании с катушками индуктивности и конденсаторами; монолитные многорезонаторные пьезокварцевые фильтры. Связь между резонаторами в последних осуществляется посредством акустич. волн - объёмных (для фильтров, применяемых в диапазоне частот от неск. Мгц до десятков Мгц) либо поверхностных (в диапазоне от неск. Мгц до 1-2 Ггц). Особую группу Э. ф. составляют цифровые фильтры (рис. 2), часто выполняемые на интегральных схемах. В сверхвысоких частот технике Э. ф. реализуют на основе отрезков линий передачи (коаксиальных кабелей, полосковых линий, металлич. радиоволноводов и др.), являющихся по существу распределёнными колебательными системами. В диапазоне 100 Мгц - 10 Ггц применяют гребенчатые, шпилечные, встречно-стержневые, ступенчатые и др. Э. ф. из полосковых резонаторов (рис. 3). В диапазоне от неск. Ггц до неск. десятков Ггц распространены волноводные Э. ф., представляющие собой волноводную секцию с повышенной критич. частотой (вол-новодный ФВЧ), либо секцию, содержащую резонансные диафрагмы или объёмные резонаторы (волноводный ППФ). Лит.: Белецкий А. Ф., Теоретические основы электропроводной связи, ч. 3, М., 1959; его же, Основы теории линейных электрических цепей, М., 1967; Знаменский А. Е., Теплюк И. Н., Активные RC-фильтры, М., 1970; Алексеев Л. В., Знаменский А. Е., Л о т к о в а Е. Д., Электрические фильтры метрового и дециметрового диапазонов, М., 1976.

А. Е. Знаменский.

ЭЛЕКТРИЧЕСКИЙ ФИЛЬТР, электрофильтр (в газоочистке), аппарат для удаления из пром. газов взвеш. жидких или твёрдых частиц путём ионизации этих частиц при прохождении газа через область коронного разряда и последующего осаждения на электродах. Э. ф. в большинстве случаев состоит из двух частей: собственно Э. ф.- осадительной камеры с коронирующими и осадительными электродами - и источника напряжения. В Э. ф. зоны ионизации и осаждения могут быть совмещены или отделены одна от другой. Работают Э. ф. только на постоянном электрич. токе высокого напряжения (40-70 кв); коронирующие электроды всегда подключены к отрицат. полюсу источника тока. По состоянию газовой среды Э. ф. делятся на мокрые (газы насыщены влагой до точки росы) и сухие. По способу удаления частиц Э. ф. подразделяются на периодич. и непрерывные. Работают Э. ф. как при атм. давлении, так и при давлении выше и ниже атмосферного; темп-pa газов может достигать 500 0С и более; степень очистки газов - до 99, 9%. Э. ф. широко применяются для тонкой очистки дымовых газов тепловых электростанций, в чёрной и цветной металлургии и т. д.

ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ УСИЛИТЕЛЬ, устройство, предназначенное для повышения мощности электрич. сигналов. Поскольку усиливаемые электрич. сигналы представляют собой изменения (колебания) напряжения или тока во времени, то Э. с. у. по существу является усилителем электрических колебаний. Э. с. у. подразделяются на усилители низкой или высокой частоты, видеоусилители, постоянного тока усилители и т. д. К Э. с. у. относятся также измерительные усилители (ИУ), к-рые входят в состав различной измерит, аппаратуры - электронных вольтметров, осциллографов, потенциометров, приборов, выполненных на основе мостов измерительных, и др. ИУ позволяют повысить чувствительность и точность при измерениях электрич. и неэлектрич. величин. Осн. требование, предъявляемое к ИУ, - постоянство коэфф. усиления, достигаемое посредством глубокой отрицат. обратной связи. Кроме того, в ряде приборов (напр., вольтметрах, осциллографах) ИУ должен обеспечивать их нормальную работу в широком диапазоне частот, иногда от 0 до неск. Ггц.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.