Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






XVIII. Кино 4 страница






Лит.: Соболев В. В., Рассеяние света в атмосферах планет, М., 1972.

ПОЛЯРИЗАЦИЯ СВЕТА, одно из фундаментальных свойств оптического излучения (света), состоящее в неравноправии различных направлений в плоскости, перпендикулярной световому лучу (направлению распространения световой волны). П. с. наз. также геометрич. характеристики, к-рые отражают особенности этого неравноправия. Впервые понятие о П. с. было введено в оптику И. Ньютоном в 1704-06, хотя явления, обусловленные ею, изучались и ранее (открытие двойного лучепреломления в кристаллах Э. Бартолином в 1669 и его тео.ретич. рассмотрение X. Гюйгенсом в 1678-90). Сам термин " П. с." предложен в 1808 Э. Малюсом. С его именем и с именами Ж. Био, О. Френеля, Д. Араго, Д. Брюстера и др. связано начало широкого исследования эффектов, в основе к-рых лежит П. с.

Существ. значение для понимания П. с. имело её проявление в эффекте интерференции света. Именно тот факт, что два световых луча, линейно поляризованных (см. ниже) под прямым углом друг к другу, при простейшей постановке опыта не интерферируют, явился решающим доказательством поперечности световых волн (Френель, Араго, Т. Юнг, 1816-19). П. с. нашла естеств. объяснение в электромагнитной теории света Дж. К. Максвелла (1865-73) (см. Оптика).

Поперечность световых волн (как и любых др. электромагнитных волн) выражается в том, что колеблющиеся в них векторы напряжённости электрического поля Е и напряжённости магнитного поля Н перпендикулярны направлению распространения волны. Б к Н выделяют (отсюда указанное выше неравноправие) определённые направления в пространстве, занятом волной. Кроме того, Е и Н почти всегда (об исключениях см. ниже) взаимно перпендикулярны, поэтому для полного описания состояния П. с. требуется знать поведение лишь одного из них. Обычно для этой цели выбирают вектор Е.

Световой импульс, испускаемый к.-л.. отдельно взятым элементарным излучателем (атом, молекула) в единичном акте излучения, всегда поляризован полностью. Но макроскопич. источники света состоят из огромного числа таких частиц-излучателей; пространств. ориентации векторов Е (и моменты актов излучения) световых импульсов отд. частиц в большинстве случаев распределены хаотически (это не относится, напр., к лазерам!). Кроме того, поляризация меняется в результате процессов взаимодействия между частицами-излучателями. Поэтому в общем излучении подавляющего большинства источников направление Е не определено (оно непрерывно и беспорядочно меняется за чрезвычайно малые промежутки времени). Подобное излучение наз. неполяризованным, или естественным, светом. Е, как и всякий вектор, всегда можно представить в виде суммы его проекций на 2 взаимно перпендикулярных направления (выбираемых в плоскости, поперечной направлению распространения света). В естеств. свете разность фаз между такими проекциями непрерывно и хаотически меняется. В полностью поляризованном свете эта разность фаз строго постоянна, т. е. взаимно перпендикулярные компоненты Е когерентны (см. Когерентность). Создав определённые условия на пути распространения естеств. света, можно выделить из него поляризованную (полностью или частично) составляющую. Кроме того, полная или частичная (о смысле этого понятия см. ниже) П. с. возникает в ряде природных процессов испускания света и его взаимодействия с веществом.

Полную поляризацию монохроматического света характеризуют проекцией траектории конца вектора Е (рис. 1) в каждой точке луча на плоскость, перпендикулярную лучу. В самом общем случае т. н. эллиптической поляризации такая проекция -эллипс, что легко понять, учитывая постоянство разности фаз между взаимно перпендикулярными компонентами Е и одинаковость частоты их колебаний в монохроматической волне. Для полного описания эллиптич. П. с. необходимо знать направление вращения Е по эллипсу (правое или левое), ориентацию осей эллипса и его эксцентриситет (см., напр., рис. 2, б, г, е). Наибольший интерес представляют предельные случаи эллиптич. П. с.- линейная П. с. (разность фаз 0, k п, где k - целое число, рис. 2, а и д), когда эллипс вырождается в отрезок прямой, и круговая, или циркулярная, П. с. [разность фаз ±(2k + 1)п/2], при к-рой эллипс поляризации превращается в окружность. Определяя состояние линейно- или пло-скополяризованного света, достаточно указать положение плоскости поляризации света, поляризованного по кругу, - направление вращения (правое -рис. 2, в, или левое). В сложных неоднородных световых волнах (напр., в металлах или при полном внутреннем отражении) мгновенные направления векторов Е и Н уже не связаны простым соотношением ортогональности, и для полного описания П. с. в таких волнах требуется знание поведения каждого из этих векторов по отдельности.
[ris]

Рис. 1. Колебания проекций электрического вектора Е световой волны на взаимно перпендикулярные оси х и у (г - направление распространения волны, перпендикулярное как х, так и у). 6 и в -моментальные изображения колебаний и соответствующей огибающей концов полного вектора Е в разных точках волны для случая, когда вертикальные (по оси х) колебания на четверть периода (90°) опережают горизонтальные (по оси у). В каждой одной точке конец Е в этом случае описывает окружность. Стрелки на в нанесены лишь для того, чтобы яснее показать вид правого винта. Винтовая поверхность отнюдь не вращается вокруг z при прохождении волны. Напротив, следует представлять, что вся винтовая поверхность как целое, не вращаясь, переносится вдоль z со скоростью волны.

Рис. 2. Примеры различных поляризаций светового луча (траекторий конца электрического вектора Е в к.-л. одной точке луча) при различных разностях фаз между взаимно перпендикулярными компонентами Ех и Еу. Плоскость рисунков перпендикулярна направлению распространения света: а и д - линейные поляризации; в - правая круговая поляризация; б, г и е - эллиптические поляризации различной ориентации. Приведённые рисунки соответствуют положительным разностям фаз б (опережению вертикальных колебаний по сравнению с горизонтальными). X -длина волны света.

[ris]

Если фазовое соотношение между компонентами (проекциями) Е меняется за времена, много меньшие времени измерения П. с., нельзя говорить о полной П. с. Однако может случиться, что в составляющих пучок света монохроматич. волнах Е меняется не совершенно хаотически, а между взаимно перпендикулярными компонентами Е существует нек-рый преимущественный фазовый сдвиг (фазовая корреляция), сохраняющийся в течение достаточно длительного времени. Физически это означает, что в поле световой волны амплитуда проекции Е на одно из взаимно перпендикулярных направлений всегда больше, чем на другое. Степень подобной фазовой корреляции в таком - частично поляризованном - свете описывают параметром р - степенью П. с. Так, если преимуществ, фазовый сдвиг равен О, свет частично линейно поляризован; ± п/2-частично поляризован по кругу. Частично поляризованный свет можно рассматривать как " смесь" двух крайних видов -полностью поляризованного и естественного. Их соотношение и характеризуют параметром р, к-рый часто (но не всегда) определяют как | I1-I 2|/(I1+I 2). где индексы 1 и 2 относятся к интенсив-ностям I света двух чортогональных" поляризаций, напр, линейных во взаимно перпендикулярных плоскостях или соответствующих правой и левой круговым поляризациям; р может меняться от О до 100%, отражая все количеств. градации состояния П. с. (Следует иметь в виду, что свет, проявляющийся в одних опытах как неполяризованный, в других может оказаться полностью поляризованным - с П. с., меняющейся во времени, по сечению пучка или по спектру.)

В квантовой оптике электромагнитное излучение рассматривают как поток фотонов (см. Излучение, Квантовая механика. Оптика). Состояния П. с. с квантовой точки зрения определяются тем, каким моментом количества движения обладают фотоны в потоке. Так, фотоны с круговой поляризацией (правой или левой) обладают моментом, равным ±h (h - Планка постоянная). Любое состояние П. с. может быть выражено всего через два т. н. базисных состояния. При описании П. с. выбор пары исходных базисных состояний неоднозначен - ими могут служить, напр., любые две взаимно-ортогональные линейные П. с., правая и левая круговые П. с. и т. д., причём в каждом случае от одной пары базисных состояний можно по определённым правилам перейти к др. паре.

Эта неоднозначность имеет в квантовом подходе принципиальный характер, однако -" произвол" обычно ограничивают конкретные физич. условия: наиболее удобно выбирать за базисную пару такие состояния П. с., к-рые преобладают в актах испускания фотонов элементарными излучателями либо определяют рассматриваемый процесс взаимодействия света и вещества. (Определение состояния П. с. на опыте осуществляется с помощью такого взаимодействия; по общим правилам квантовой механики подобный эксперимент всегда меняет -иногда пренебрежимо мало, иногда существенно - исходную П. с.) Базисные состояния и состояния, описываемые любой линейной комбинацией базисных (суперпозицией, см. Суперпозиции принцип), наз. чистыми. Они соответствуют полной П. с., со степенью П. с. 100%. Фотоны могут находиться не только в чистых, но и в т. н. смешанных состояниях, в к-рых степень их поляризации меньше 100% и может доходить до нуля (естеств. свет). Смешанные состояния также выражаются через базисные, но более сложным образом, чем линейная суперпозиция (их наз. некогерентной смесью чистых состояний). Взаимодействие света и вещества может в определённых условиях приводить к полному или частичному " выделению" чистых состояний из смешанных (за счёт упомянутого выше изменения П. с. при таком взаимодействии).

Это явление используется для получения полностью поляризованного света или увеличения степени П. с. во мн. поляризационных приборах. Если за базисные состояния П. с. выбраны две круговые (правая и левая) П. с., то при их наложении (когерентной суперпозиции) в равных долях наблюдается линейная П. с.; суперпозиции их в различных др. соотношениях дают эллиптические П. с. со всевозможными характеристиками. Через эти же базисные состояния могут быть выражены любые смешанные состояния. Т. о., тот или иной выбор всего двух базисных состояний даёт возможность описать все состояния П. с.

Эксперименты подтверждают теоре-тич. вывод о том, что каждый фотон, поляризованный по кругу, обладает моментом количества движения h = h/2п (см. Оптическая ориентация, Садовского эффект). Характер поляризации фотонов определяется законом сохранения момента количества движения системы элементарный излучатель - испущенный фотон (при условии, что взаимодействием отд. излучателей между собой можно пренебречь).

Кроме особенностей элементарных актов излучения, к частичной (а иногда и полной) П. с. приводит множество фи-зич. процессов. К ним относятся, напр., отражение света и преломление света, при к-рых П. с. обусловлена различием оптич. характеристик границы раздела двух сред для компонент светового пучка, поляризованных параллельно и перпендикулярно плоскости падения (см. Брюстера закон). Свет может поляризоваться при прохождении через среды, обладающие естеств. или вызванной внеш. воздействиями (индуцированной) оптической анизотропией (вследствие неодинаковости коэффициентов поглощения света при различных состояниях П. с., напр. при правой и левой круговых П. с.-т. н. круговой дихроизм, являющийся частным случаем плеохроизма', вследствие различия преломления показателей среды для лучей различных линейных поляризаций - двойного лучепреломления, см. также Кристаллооптика). Очень часто полностью поляризовано излучение лазеров', одной из осн. (но не единственной!) причин П. с. в лазерах является специфич. характер вынужденного излучения, при к-ром поляризации испускаемого фотона и фотона, вызвавшего акт испускания, абсолютно тождественны; т. о. при лавинообразном умножении числа испускаемых фотонов в лазерном импульсе их поляризации могут быть совершенно одинаковыми. П. с. возникает при резонансном излучении в парах, жидкостях и твёрдых телах. П. с. при рассеянии света столь характерна, что её исследование - один из осн. способов изучения как особенностей и условий самого рассеяния, так и свойств рассеивающих центров, в частности их структуры и взаимодействия между собой (см., напр., Атмосферная оптика, Комбинационное рассеяние света, Поляризация небесного свода). (При рассеянии поляризованного света происходит и его деполяризация - уменьшение степени П. с.) В определённых условиях сильно поляризовано люминесцентное свечение (см. Люминесценция), особенно при возбуждении его поляризованным светом. П. с. весьма чувствительна к величине напряжённости и ориентации электрич. и магнитных полей; в сильных полях компоненты, на к-рые расщепляются спектральные линии испускания, поглощения и люминесценции газообразных и конденсированных систем, оказываются поляризованными (см. Зеемана эффект, Магнитооптика, Штарка эффект).

Одним из эффектов интерференции поляризованных лучей света является хроматическая П. с.

Характерная для всех интерференционных явлений зависимость от длины волны (" цвета") излучения приводит при этой " П. с." (как показывает само название) к окрашиванию интерференционной картины, если исходный поток был белым светом. Обычная схема получения картины хроматич. П. с. в параллельных лучах приведена на рис. 3. В зависимости от разности хода обыкновенного и необыкновенного лучей, приобретаемой в двулучепреломляющей пластинке, наблюдатель видит эту пластинку (в свете, выходящем из анализатора) тёмной или светлой в монохроматич. свете либо окрашенной - в белом. Если пластинка неоднородна по толщине или по показателю преломления, её участки, в к-рых эти параметры одинаковы, видны соответственно одинаково тёмными или светлыми либо одинаково окрашенными. Линии одинаковой цветности называют изохромами. Схема для наблюдения хроматической П. с. в сходящихся лучах показана на рис. 4, а получаемые при этом картины - на рис. 5.

[ris]

Рис. 3. Схема наблюдения интерференции поляризованных лучей (хроматической поляризации) в параллельном световом потоке. Поляризатор N1 пропускает лишь одну линейно поляризованную (в направлении N1N1) составляющую исходного пучка. В пластинке К, вырезанной из двулучепреломляющего одноосного кристалла параллельно его оптической оси ОО и установленной перпендикулярно пучку, плоскополяризованный луч разделяется на составляющую А0 с колебаниями электрического вектора, параллельными ОО (необыкновенный луч), и составляющую АО, колебания электрического вектора к-рой перпендикулярны ОО (обыкновенный луч). Показатели преломления материала пластинки К для этих двух лучей (пе и по) различны, а следовательно, различны скорости их распространения в К, вследствие чего эти лучи, распространяясь по одному направлению, приобретают разность хода. Разность фаз их колебаний при выходе из К равна s=
= (1/ X)-2п/(no - nе), где l - толщина К, X - длина волны падающего света. Анализатор N2 пропускает из каждого луча только его слагающую с колебаниями, лежащими в плоскости его главного сечения N2N2. Если N1 ПЕРПАНДИКУЛЯРНО N2 (оптические оси анализатора и поляризатора скрещены), амплитуды слагающих А1 и А2 равны, а разность их фаз Д = б + п. Они когерентны и интерферируют между собой. В зависимости от величины Д на к.-л. участке пластинки К наблюдатель увидит этот участок тёмным [Д -= (2/k + 1)п, k - целое число] или светлым (Д = 2/ k п) в монохроматическом свете и окрашенным - в белом свете.

[ris]

Рис. 4. Схема для наблюдения хроматической поляризации в сходящихся лучах. N1 - поляризатор, N2- анализатор; К - пластинка толщиной l, вырезанная из одноосного двулучепреломляющего кристалла параллельно его оптической оси; L1, L2 - линзы. Лучи разного наклона проходят в К разные пути, приобретая разности хода (различные для обыкновенного и необыкновенного лучей). По выходе из анализатора они интерферируют, давая характерные интерференционные картины, показанные на рис. 5.

Рис. 5. Интерференционные картины хроматической поляризации в сходящихся лучах при условии, что оптические оси анализатора и поляризатора скрещены (N1 | N2, см. рис. 4). а - срез кристаллической пластинки К перпендикулярен её оптической оси; б - срез параллелен оптической оси. Если падающий на анализатор свет - белый, картины приобретают сложную характерную окраску.

На мн. из перечисленных явлений основаны принципы действия разнообразных поляризационных приборов, с помощью которых не только анализируют состояние П. с., испускаемого внеш. источниками, но и получают требуемую П. с. и преобразуют одни её виды в другие.

Особенности взаимодействия поляризованного света с веществом обусловили его исключительно широкое применение в науч. исследованиях кристаллохимич. и магнитной структуры твёрдых тел, строения биологич. объектов (напр., поляризационная микроскопия, см. Микроскоп), состояний элементарных излучателей и их отд. центров, ответственных за квантовые переходы, для получения информации о чрезвычайно удалённых (в частности, астрофизических) объектах. Вообще, П. с. как существенно анизотропное свойство излучения позволяет изучать все виды анизотропии вещества -поведение газообразных, жидких и твёрдых тел в полях анизотропных возмущений (механических, звуковых, электрических, магнитных, световых), в кристаллооптике - структуру кристаллов (в подавляющем большинстве - оптически анизотропных), в технике (напр., в машиностроении) - упругие напряжения в конструкциях (см. Поляриэационно-оптический метод исследования напряжений) и т. д. Изучение П. с., испускаемого или рассеиваемого плазмой, играет важную роль в диагностике плазмы. Взаимодействие поляризованного света с веществом может приводить к оптической ориентации или т. н. выстраиванию атомов, генерации мощного поляризованного излучения в лазерах и пр. Напротив, исследование деполяризации света при фотолюминесценции даёт сведения о взаимодействии поглощающих и излучающих центров в частицах вещества, при рассеянии света - ценные данные о структуре и свойствах рассеивающих молекул или иных частиц, в др. случаях - о протекании фазовых переходов и т. д. П. с. широко используется в технике, напр. при необходимости плавной регулировки интенсивности светового пучка (см. Малюса закон), для усиления контраста и устранения световых бликов в фотографии, при создании светофильтров, модуляторов излучения (см. Модуляция света), служащих одними из осн. элементов систем оптической локации и оптической связи, для изучения протекания химия, реакций, строения молекул, определения концентраций растворов (см. Поляриметрия, Сахариметрия) и мн. др. П. с. играет заметную роль в живой природе. Мн. живые существа способны чувствовать П. с., а нек-рые насекомые (пчёлы, муравьи) ориентируются в пространстве по поляризованному (в результате рассеяния в атмосфере) свечению голубого неба. При определённых условиях к П. с. становится чувствительным и человеческий глаз (т. н. явление Хайдингер а).

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Шерклифф У., Поляризованный свет, пер. с англ., М., 1965; Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Феофилов П. П., Поляризованная люминесценция атомов, молекул и кристаллов, М., 1959; Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, Зизд., М., 1969. В. С. Запасский.

ПОЛЯРИЗАЦИЯ ЧАСТИЦ, характеристика состояния частиц, связанная с наличием у них собственного момента количества движения - спина. Понятие П. ч. близко к понятию поляризации света. Последнее означает, в частности, что плоские световые волны с определёнными частотой, направлением распространения и интенсивностью могут отличаться расположением векторов напряжённостей электрического и магнитного полей в пространстве, т. е. поляризацией. Это свойство сохраняется и при квантовом описании света: фотон может обладать поляризацией.

Частица с ненулевой массой покоя (электрон, ядро и др.) и спином J (в единицах постоянной Планка h ) имеет 2 J + 1 квантовых состояний, отвечающих различным ориентациям спина (различным значениям проекции спина на нек-рое направление). Состояние частицы представляет собой суперпозицию этих состояний. Если коэфф. суперпозиции полностью определены (" чистое" квантовое состояние), то говорят, что частица полностью поляризована. Если коэфф. суперпозиции определены не полностью, а заданы только нек-рыми ста-тистич. характеристиками (" смешанное" состояние), то говорят о частичной поляризации. В частности, частица может быть полностью неполяризованной; это означает, что её свойства одинаковы по всем направлениям, как у бесспиновой частицы (с J = 0). В общем случае П. ч. определяет степень симметрии (или асимметрии) частиц в пространстве. Частицу называют поляризованной (в узком смысле слова), если характеристика её симметрии включает винтовую ось (как у вращающегося твёрдого тела или у циркулярно поляризованного света). Если такой оси нет, но нет и сферич. симметрии, то П. ч. наз. выстроенностью (пример -линейно поляризованный свет). П. ч. определяется в общем случае числом параметров, равным (2J +1)2-1.

Частица с нулевой массой, напр, фотон, обладает только двумя состояниями, определяемыми её спином, а её поляризация определяется в общем случае тремя параметрами. Нейтрино с нулевой массой обладают особым свойством -они всегда полностью поляризованы в форме правой или левой циркулярной поляризации (см. Нейтрино).

В. Б. Берестецкий.

ПОЛЯРИЗАЦИЯ ЭЛЕКТРОХИМИЧЕСКАЯ, отклонение электродного потенциала Е от стационарного потенциала ЕСТ, к-рый электрод приобретает в отсутствие внешнего тока. П. э. измеряется в вольтах (милливольтах). Если отклонение отрицательно (вызвано подводом электронов, к-рые должны расходоваться в реакциях, идущих в катодном направлении), то П. э. называют катодной; при противоположном направлении тока - анодной. Графики функциональной связи между П. э. и плотностью тока i называют соответственно катодными и анодными поляризационными кривыми и широко используют при описании и исследовании электрохим. и коррозионных процессов.

В общем случае связь между i и П. э. криволинейна, однако в интервале отклонений ±10-15 мв от Ест она, как правило, прямолинейна. Угловой коэффициент этого участка (т. е. отношение приращения П. э. к приращению г) имеет размерность сопротивления единицы поверхности (ом*см2) и наз. поляризационным сопротивлением электрода Rп. Электроды с большим Rп наз. сильнополяризуемыми, т. к. уже при очень малых г их потенциалы сильно отклоняются от Е ст. Электроды с малым Rп - слабополяризуемые. Существует обратная пропорциональность между Rпи интенсивностью того обмена электрич. зарядами, к-рый происходит между электродом и электролитом при Е ст. На коррелирующем электроде эта интенсивность обычно совпадает с плотностью коррозионного тока, и потому измерение Rп иногда используют для определения скорости электрохим. коррозии. Если на электроде возможна лишь одна электродная реакция, то Ест совпадает с равновесным потенциалом Ер этой реакции, П. э.- с её перенапряжением, a Rпоказывается обратно пропорциональным равновесному току обмена. Термином " концентрационная поляризация" обозначают те изменения Е, к-рые связаны с замедленным переносом исходных или конечных компонентов протекающей на электроде реакции. В зоне реакции концентрация первых (Сисх) понижается, а вторых (CKOH) - увеличивается. Это повышает тенденцию реакции протекать в обратном направлении, что и должно компенсироваться приложением дополнительной разности потенциалов. Последняя особенно резко растёт, когда скорость реакции достигает предельно возможной скорости дифузионных потоков, так что либо Сисх снижается практически до 0, либо конечные продукты кристаллизуются, закрывая электродную поверхность. Эту предельную диффузионную плотность тока можно повысить, улучшив массоперенос, напр., путём перемешивания. Вместо термина " концентрационная поляризация" также пользуются термином " концентрац ионное перенапряжение", т. к. обозначаемое им отклонение Е должно фактически отсчитываться не от Ест, а от Ер соответствующей индивидуальной реакции.

Явления П. э. могут быть и вредны, и полезны. Напр., при электролизе они повышают расход электроэнергии, а при работе гальванич. элемента понижают отдачу электроэнергии; зато при коррозии могут вести к торможению нежелательных процессов. См. также ст. Пассивирование.

Лит.: Кинетика электродных процессов, М., 1952 (авт. колл. под рук. А. Н. Фрумкина); Скорчеллетти В. В., Теоретическая электрохимия. Л., 1959; Феттер К., Электрохимическая кинетика, пер. с нем.. М., 1967; Антропов Л. И., Теоретическая электрохимия, 2 изд., М., 1969. В. М. Новаковский.

ПОЛЯРИЗОВАННЫЕ НЕЙТРОНЫ, совокупность нейтронов, спины к-рых имеют преимущественную ориентацию по отношению к к.-л. выделенному направлению в пространстве, обычно направлению магнитного поля. Т. к. нейтрон обладает спином 1/2, то в магнитном поле Н возможны 2 ориентации его спина: параллельно или антипараллельно Н. Нейтронный пучок поляризован, если он содержит разное количество N нейтронов со спинами, ориентированными вдоль (N+) и против поля (N-). Степень поляризации характеризуют величиной

P = (N+- N-)(N+ + N-).

Впервые П. н. были получены при пропускании пучка нейтронов через намагниченную до насыщения железную пластину (метод предложен Ф. Блохам в 1936 и исследован Д. Юзом с сотрудниками в 1947, США). Нейтроны, спины к-рых параллельны направлению намагниченности ферромагнетика, сильнее рассеиваются и выбывают из пучка. В результате пучок нейтронов, прошедший через пластину, обогащается нейтронами со спинами, антипараллельными намагниченности. Метод требует сильных намагничивающих полей. В полях Н ~10000э наибольшая степень поляризации P = 0, 6.

Более эффективен дифракционный метод (разработан К. Шаллом, Е. Воланом и В. Колером, США, 1951), основанный на дифракции нейтронов от определённых плоскостей намагниченных ферромагнитных монокристаллов (см. Дифракция частиц), напр. сплава Со - Fe. Меняя величину намагниченности и семейства отражающих плоскостей кристалла, можно изменять амплитуду когерентного магнитного рассеяния от 0 до нек-рой макс. величины. Это означает, что для ферромагнитного монокристалла можно подобрать такое брэгговское отражение и величину намагниченности, чтобы ядерная b и магнитная f мамплитуды оказались равными. Тогда для нейтронов со спином, антипараллельным направлению намагниченности, суммарная амплитуда рассеяния равна 0, т. е. под углом Брэгга отразится пучок нейтронов со спинами, параллельными намагниченности. Дифракционный метод позволяет получить монохроматич. пучок П. н. тепловых и резонансных энергий (см. Медленные нейтроны) со степенью поляризации до 0, 99.

Часто для получения П. н. пользуются методом отражения нейтронов от намагниченных ферромагнитных зеркал (напр., из Со). При определённых условиях полное отражение испытывают нейтроны со спинами, параллельными намагниченности ферромагнетика. Метод позволяет получить интенсивные отражённые поляризованные пучки нейтронов. Поляризатором нейтронов может служить также неоднородное магнитное поле. Пучок нейтронов, проходя через такое поле, расщепляется на 2 пучка, т. к. на нейтроны с двумя разными ориентациями спинов действуют противоположно направленные силы (см. Штерна - Герлаха опыт).

Одним из методов получения П. н. является рассеяние нейтронов на ориентированных ядрах. Для этого нейтроны пропускают через поляризованную ядерную мишень. Амплитуда ядерного рассеяния зависит от ориентации спина нейтрона относительно спина ядра. Максимальное рассеяние соответствует параллельности спинов нейтрона и ядра, минимальное - их антипараллельности. Особенно эффективна мишень, содержащая ориентированные протоны. Т. к. сечение рассеяния медленных нейтронов на протонах не зависит от их энергии, то удаётся получить П. н. в интервале от 10-2 эв до 104-105 эв. Впервые этот метод был осуществлён Ф. Л. Шапиро с сотрудниками в 1963. П. н. с энергией > 106 эв образуются при рассеянии нейтронов на ядрах за счёт спин-орбитального взаимодействия.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.