Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






П. Происхождение в условия залегания






В познания генетич. природы H. и условий ее образования можно выделить неск. периодов Первый из них (донауч-ный) продолжался до ср веков. Так, в 1546 Агрикола писал, что H и каменные угли имеют неорганич. происхождение; последние образуются путем сгущения и затвердевания H.

Второй период - науч. догадок - связывается с датой опубликования труда M В. Ломоносова " О слоях земных" (1763), где была высказана идея о дистилляционном происхождении H. из того же органич. вещества, к-рое дает начало каменным углям.

Третий период в эволюции знаний о происхождении H. связан с возникновением и развитием нефтяной промышленности. В этот период были предложены разнообразные гипотезы неорганич. (минерального) и органич происхождения H.

В 1866 франц. химик M Бертло высказал предположение, что H. образуется в недрах Земли при воздействии углекислоты на щелочные металлы. В 1871 франц. химик Г. Биассон выступил с идеей о происхождении H. путем взаимодействия воды, CO2, H2S с раскаленным железом. В 1877 Д. И. Менделеев предложил минеральную (карбидную) гипотезу, согласно к-рой возникновение H. связано с проникновением воды в глубь Земли по разломам, где под воздействием ее на " углеродистые металлы" - карбиды - образуются углеводороды и окись железа. В 1889 В. Д. Соколов изложил гипотезу космич. происхождения H. По этой гипотезе исходным материалом для возникновения H. служили углеводороды, содержавшиеся в газовой оболочке Земли ещё во время её звёздного состояния. По мере остывания Земли углеводороды поглотились расплавленной магмой. Затем, с формированием земной коры, углеводороды проникли в осадочные породы в газообразном состоянии, конденсировались и образовали H.

В 50-60-е гг. 20 в. в СССР (H. А. Кудрявцев, В. Б. Порфирьев, Г. H. Доленко и др.) и за рубежом (англ, учёный Ф. Хойл и др.) возрождаются различные гипотезы неорганич. (космич., вулка-нич., магматогенного) происхождения H. Однако на 6-м (1963), 7-м (1967) и 8-м (1971) Междунар. нефт. конгрессах неорганич. гипотезы не получили поддержки.

Важным для познания генезиса H. являлось установление в кон. 19 - нач. 20 вв. оптич. активности H., а также тесной связи H. с сапропелевым органич. веществом в осадочных породах. Сапропелевую гипотезу, высказанную впервые нем. ботаником Г. Потонье в 1904-05, в дальнейшем развивали рус. и сов. учёные - H. И. Андрусов, В. И. Вернадский, И. M. Губкин, H. Д. Зелинский и др. Сапропелевая гипотеза ассимилирована совр. теорией осадочно-миграцион-ного происхождения H. Развитию представлений о природе H. и условиях формирования её залежей способствовали также труды нем. учёного К. Энглера, амер. геологов Дж. Нъюберри, Э. Ортона, Д. Уайта, рус. и сов. учёных - Г. П. Михайловского, Д. В. Голубятникова, M. В. Абрамовича, К. И. Богдановича и др.

Четвёртый период характеризуется организацией широких геолого-геохимич. исследований, направленных на решение проблемы нефтеобразования и органически связанной с ней проблемы нефтемате-ринских отложений. В СССР такие работы осуществлены А. Д. Архангельским в 1925-26. В США аналогичные исследования начаты в 1926 П. Траском. В 1932 была опубликована классич. работа И. M. Губкина " Учение о нефти", сыгравшая огромную роль в развитии представлений о генезисе H. и формировании её залежей. В 1934 в H., асфальтах и ископаемых углях были найдены порфирины, входящие в молекулу хлорофилла и др. природных пигментов.

Начало пятого периода связано с открытием в 50-е гг. 20 в. (в СССР - А. И. Горской, в США - Ф. Смитом) нефт. углеводородов в осадках водоёмов различного типа (в озёрах, заливах, морях, океанах). Дальнейшему прогрессу в этой области способствовали работы MH. учёных и коллективов исследователей в разных странах: в СССР (А. Д. Архангельский, В. И. Вернадский, А. П. Виноградов, И. M. Губкин, H. M. Страхов, А. А. Трофимук, A. M. Акрамходжаев, И. О. Брод, H. Б. Вассоевич, В. В. Вебер, А. Ф. Добрянский, H. А. Ерёменко, А. Э. Конторович, M. Ф. Мирчинк, С. H. Неручев, К. Ф. Родионова, В. А. Соколов, В. А. Успенский и др.), в США (Ф. M. Ван-Тайл, К. Зобелл, У. Майн-шайн, А. Леворсен, Дж. Смит, Ф. Смит, Дж. Хант, X. Хедберг, Э. Эванс, П. Эй-белсон, Дж. Эрдман и др.), во Франции (Б. Тиссои др.), в ГДР (P. Майнхольд, П. Мюллер и др.), в ФРГ (M. Тайхмюл-лер, Д. Вельте и др.), а также в Японии, Великобритании и др. Убедительные доказательства биогенной природы нефте-материнского вещества были получены в результате детального изучения эволюции молекулярного состава углеводородов и их биохимич. предшественников (про-гениторов) в исходных организмах, в органич. веществе осадков и пород и в различных H. из залежей. Важным явилось обнаружение в составе H. х е м офоссилий - весьма своеобразных, часто сложно построенных молекулярных структур явно биогенной природы, т. е. унаследованных (целиком или в виде фрагментов) от органич. вещества. Изучение распределения стабильных изотопов углерода (С12, С13) в H., органич. веществе пород и в организмах (А. П. Виноградов, Э. M. Галимов) также подтвердило неправомочность неорганнч. гипотез. Было установлено, что H. - результат литогенеза. Она представляет собой жидкую (в своей основе) гидрофобную фазу продуктов фоссилизации (захоронения) органич. вещества (керогена) в водно-осадочных отложениях. Нефтеобразо-вание - стадийный, весьма длительный (обычно много млн. лет) процесс, начинающийся ещё в живом веществе. Выделяется ряд стадий: подготовительная, во время к-рой под влиянием биохимич. и биокаталитич. факторов образуется диффузно рассеянная в материнской породе H. (микронефть); главная, когда в результате битуминизации генерируется осн. масса микронефти, происходит её " созревание", сближение по составу с собственно H. и миграция в коллекторы, а по ним в ловушки; постумная, когда усиливается накопление низкомолекулярных углеводородов, обусловливающее образование обычно лёгкой газорастворённой H. - газоконденсата; постепенно газы становятся всё более " сухими" (т. е. богатыми CH4). И. M. Губкин выделял также стадию разрушения нефтяных месторождений.

Считается, что осн. исходным веществом H. обычно является планктон, обеспечивающий наибольшую биопродукцию в водоёмах и накопление в осадках органич. вещества сапропелевого типа, характеризующегося высоким содержанием водорода (благодаря наличию в керо-гене алифатич. и алициклич. молекулярных структур). Породы, образовавшиеся из осадков, содержащих такого типа органич. вещество, потенциально нефте-материнские. Чаще всего это глины, реже - карбонатные и песчано-алеври-товые породы, к-рые в процессе погружения достигают верхней половины зоны мезокатагенеза (см. Катагенез), где вступает в силу главный фактор нефтеобразования - длит, прогрев органич. вещества при темп-ре от 50 0C и выше. Верхняя граница этой главной зоны нефтеобразования располагается на глуб. от 1, 3- 1, 7 км (при ср. геотермич. градиенте 4 0С/100 м) до 2, 7-3 км (при градиенте 2 0С/100 м) и фиксируется сменой буро-угольной степени углефикации органич. вещества каменноугольной. Гл. фаза нефтеобразования приурочена к зоне, где углефикация органич. вещества достигает степени, отвечающей углям марки Г (см. Каменный уголь). Эта фаза характеризуется значит, усилением термич. и (или) терм оката литич. распада полимер-липоидных и др. компонентов керогена. Образуются в большом количестве нефт. углеводороды, в т. ч. низкомолекулярные (C5- C15), почти отсутствовавшие на более ранних этапах превращения органич. вещества. Эти углеводороды, дающие начало бензиновой и керосиновой фракциям H., значительно увеличивают подвижность микронефти. Одновременно, вследствие снижения сорбционной ёмкости материнских пород, увеличения внутр. давления в них и выделения воды в результате дегидратации глин, усиливается перемещение микронефти в ближайшие коллекторы. При миграции по коллекторам в ловушки H. всегда поднимается, поэтому её макс. запасы располагаются на несколько меньших глубинах, чем зона проявления гл. фазы нефтеобразования (рис. 4), нижняя граница которой обычно соответствует зоне, где органич. вещество пород достигает степени углефикации, свойственной коксовым углям (К). В зависимости от интенсивности и длительности прогрева эта граница проходит на глубинах (имеются в виду макс, глубины погружения за всю геол. историю данной серии осадочных отложений) от 3-3, 5 до 5-6 км.

Рис. 4. Распределение мировых запасов нефти (в крупных и средних месторождениях) по глубинам залегания (по H. Б.Вассоевичу, 1973): 1- интенсивность генерации нефти (в условных единицах); 2 - запасы нефти (%). ГЗН - главная зона нефтеобразовання.

H. находится в недрах в виде скоплений различного объёма от неск. мм3 до неск. десятков млрд. м3. Практич. интерес имеют залежи H., представляющие её скопления с массой от нескольких тыс. т и больше, находящиеся в пористых и проницаемых породах-коллекторах. Различают 3 осн. типа коллекторов: межгранулярные (гл. обр. песчаные и алевритовые породы), кавернозные (напр., карстово-кавернозные, рифогенные и др. известняки) и трещинные (карбонатные, кремнистые и др. трещиноватые породы). Залежь обычно располагается под слабопроницаемыми породами, слагающими покрышку.

Каждая залежь H. находится в ловушке, задержавшей мигрировавшие H. и газ и сохранявшей их в течение длит, времени. Можно выделить 3 осн. типа ловушек: замкнутые, полузамкнутые и незамкнутые. Первые 2 типа связаны с первичным выклиниванием (стратиграфич. несогласие, тектонич. экранирование) коллекторов (рис. 5) и поэтому именуются ловушками выклинивания. Незамкнутые ловушки являются гидравлическими - в них газ и H. удерживаются в сводовой части антиклинального перегиба слоя (весьма распространённый тип залежей H.) или выступа подземного рельефа (напр., захороненного рифа). Наиболее приподнятую часть ловушки иногда занимает газ (" газовая шапка"); в этом случае залежь наз. газонефтяной; под H. полагается вода. H. залегает на раз) глубинах, вплоть до 6-7 км, однако на глубине 4, 5-5 км нефт. залежи чаще сменяются газовыми и газоконденсатными. Макс. число залежей H. располагается в интервале 0, 5-3 км, а наибольшие запасы сосредоточены в пределах 0, 8-2, 4 км.

Рис 5 Различного типа залежи нефти в гидравлически незамкнутых (1 - 3) и замкнутых (4-6) ловушках / - пласто вые сводовые нефтяные и газонефтяные залежи 2 - массивная сводовая газонефтяная залежь 3 - нефтяная залежь в выступе палеорельефа, первичного (напр, рифа) или вторичного (эрозионного), 4 - нефтяная залежь, экранированная страти графическим несогласием, 5 - нефтяная залежь в ловушке первичного (фациального, литологического) выклинивания кол лектора, 6 - тектонически экранирован ная залежь нефти, а - нефть, б - газ, в - вода






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.