Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Природа электрических волн мозга






Существование электрических волн мозга на первый взгляд не кажется неожиданным. Мы знаем, что функция мозга имеет электрическую природу и что в любой момент миллионы, а может быть, и миллиарды его нейронов замыкают и размыкают соответствующие электрофизиологические цепи и посылают токи в различных направлениях. Поскольку все электрические токи производят эффекты, которые можно обнаружить на расстоянии, следует ли удивляться тому, что между металлическими пластинками, плотно прижатыми к различным участкам головы, регистрируются очень малые электрические потенциалы? Однако в действительности нас поражает не самый факт существования этих потенциалов, а скорее та форма электрических волн, которая иногда наблюдается. Конечно, вполне возможно, что типичная форма ЭЭГ при бодрствовании (рис. А) представляет собой суммарный результат миллионов ничтожных токов, идущих в разных направлениях и в разные моменты времени в нейронах, находящихся поблизости от наружного измерительного электрода; такого рода флуктуации электрического напряжения физики и инженеры-связисты называют шумом, который, как известно, является следствием суммирования множества случайных, не связанных друг с другом очень слабых электрических эффектов. Однако форма ЭЭГ на рис. Б - это уже нечто иное. Именно регулярность колебаний потенциала, образующих альфа-ритм, сразу же вызвала интерес к электрическим волнам мозга. Такую регулярность можно объяснить только значительной синхронностью нейронных токов. Это явление выглядит еще внушительнее, если регистрировать ЭЭГ одновременно с помощью нескольких пар электродов, укрепленных на обеих сторонах затылочной области, и сравнивать получаемые записи современным электронным методом взаимно-корреляционного анализа. Такие сравнения показали, что нейронные токи синхронизированы не только на небольших местных участках; оказывается, подобная согласованная синхронизация охватывает существенную часть всего головного мозга!

Так как работа нервной системы в основном состоит в проведении импульсов типа включение-выключение, сначала думали, что альфа-ритм отражает одновременную синхронизированную импульсацию большого числа нейронов. Однако основная масса новых данных говорит в пользу того, что импульсная активность нейронов, вероятно, не играет здесь непосредственной роли. На самом деле альфа-волны, по-видимому, отражают более централизованные потоки электричества в войлокообразной массе дендритов, составляющей характерную особенность серого вещества головного мозга. Полагают, что возникающие при этом дендритные потенциалы обычно не настолько велики, чтобы вызывать типичную импульсную активность нейронов. Однако повышение и понижение дендритных потенциалов, вероятно, соответственно облегчает и затрудняет активацию нейронов при получении ими от других нейронов тех специфических импульсов, которые лежат в основе вычислительных, управляющих и мыслительных процессов. Иными словами, альфа-ритм, по-видимому, отражает прохождение через всю массу нейронов периодической волны сенсибилизации (от лат. sensibilis - чувствительный, в физике - передача энергии возбуждения от одной молекулы к другой). Как полагают, именно в эти периоды высокой чувствительности мозг наиболее восприимчив к сенсорной информации, поступающей с периферии, и легче всего может начать ее переработку, если сенсорный сигнал становится достаточно сильным, чтобы требовать внимания со стороны организма.

Эта интерпретация альфа-ритма заставляет вспомнить о синхронизирующих импульсах, используемых в электронных цифровых вычислительных машинах. Конечный результат в обоих случаях состоит в том, что различные элементы системы сенсибилизируются и получают возможность действовать только в ограниченные, периодически повторяющиеся промежутки времени. Возникает интересный вопрос: удовлетворяет ли частота альфа-ритма требованиям этой гипотезы?
При конструировании электронной вычислительной машины интервал между последовательными синхронизирующими импульсами обычно делают как можно более коротким, чтобы достичь максимальной скорости вычислений. Как можно более короткий интервал - означает время, необходимое для тото, чтобы все компоненты, участвующие в одном шаге вычислительного процесса, могли выполнить соответствующие операции. Для современных быстродействующих электронных переключателей это время обычно измеряется миллионными долями секунды или еще короче. Поскольку в природе мы встречаем так много примеров высокой эффективности, можно было бы ожидать, что интервал альфа-ритма (около 0, 1 секунды) соответствует времени, необходимому для того, чтобы нервные импульсы могли пройти нейронную цепь такой длины, какая типична для сложных нервных процессов. В подтверждение подобной догадки действительно можно привести некоторые данные. Прежде всего время, необходимое нейрону для того, чтобы он мог ответить на входной сигнал одиночным импульсом и после этого прийти в состояние готовности к новому импульсу, составляет несколько тысячных секунды; цепь длиной от нескольких десятков до сотни последовательно соединенных нейронов (такие числа по крайней мере кажутся правдоподобными) согласовалась бы с частотой альфа-ритма. Эту линию рассуждений подкрепляют эксперименты, показывающие, что мозгу требуется примерно 0, 1 секунды, чтобы сформулировать приказ о простой мышечной реакции после получения сенсорного импульса. Возможно, однако, что более показательны другие эксперименты, которые провел Дж. Барлоу в Массачусетском технологическом институте. В этих экспериментах записывали ЭЭГ у человека, перед глазами которого на короткое время вспыхивал яркий свет. Оказалось, что каждая вспышка вызывает ряд последовательных волн, частота которых почти равна частоте альфа-ритма. Очевидно, внезапный разряд множества нейронов в зрительной коре, вызванный вспышкой яркого света, приводил всю систему в ритмическое колебание. Электротехнику это явление, конечно, знакомо. При внезапном разряде конденсатора в колебательном контуре в этом контуре всегда возникают колебания на его резонансной частоте; затем амплитуда колебаний уменьшается с быстротой, определяемой внутренним сопротивлением, или коэффициентом затухания контура. В экспериментах Барлоу определенная таким способом резонансная частота была очень близка к частоте нормального альфа-ритма каждого испытуемого. Интересно также, что коэффициент затухания был очень высок: за каждой вспышкой света следовало всего лишь 10 - 15 заметных колебаний ЭЭГ.

Однако все это весьма гипотетично. Правда, есть основания думать, что окончательное объяснение альфа-ритма будет все же основано на естественном резонансе какой-то части цепей головного мозга, причем период, соответствующий резонансу, будет близок к времени, необходимому для прохождения импульсов по типичной цепи взаимосвязанных нейронов. Кроме того, довольно убедительными кажутся данные о том, что альфа-ритм действительно указывает на периодическую синхронную сенсибилизацию и десенсибилизацию нейронов. Однако, без сомнения, еще не установлено, что это и в самом деле синхронизирующая импульсация, аналогичная той, которая применяется в электронных вычислительных машинах. Во всяком случае, аналогия не может быть слишком близкой, поскольку при настороженности или сосредоточенном внимании альфа-ритм исчезает, и это, видимо, позволяет предполагать, что при активной работе мозга над сознательной мыслью различные его части уже не действуют синхронно, а каждая из них обособленно выполняет свою собственную задачу. Выражаясь языком техники, в процессах мышления, по-видимому, используются несинхронные методы. Синхронизация же используется как будто только при рассеянном внимании, возможно, для непрерывного сканирования и просмотра всех сенсорных данных с целью выявления недопустимых ситуаций (мониторинг); когда таковые обнаруживаются, они, возможно, тотчас приводят в действие автоматическую систему, реорганизующую внутренние связи головного мозга в схему, лучше приспособленную для - сознательного рассмотрения возникшей задачи.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.