Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Пропускная способность






В большинстве современных технологий информация по световодам передается с помощью импульсов в двухуровневой дискретной форме (есть сигнал – нет сигнала), аналога полярности электрического сигнала здесь нет. Информационная пропускная способность линии определяется ее полосой пропускания и принятой схемой кодирования. Полоса пропускания определяется как максимальная частота импульсов, различимых приемником. Полоса пропускания волоконной линии ограничивается из-за явления дисперсии, поэтому она зависит от длины. Особенно это заметно на многомодовом волокне.[2]

Для многомодового волокна ширина полосы пропускания BW (МГц) связана с длиной L (км) через параметр, называемый полосой пропускания – А (МГц*км). Для одномодового волокна полоса пропускания зависит от молекулярной дисперсии и ширины спектра источника SW.

По полосе пропускания А можно определить максимальную частоту, при которой импульсы будут еще различимыми после прохождения через световод заданной длины. Можно решить и обратную задачу – определить максимальную длину световода, пропускающего импульсы заданной частоты. Коэффициент А приводится в спецификации на волокно и указывается для конкретной длины волны. Современные многомодовые кабели имеют А=160-500 МГц*км. Что касается современных одномодовых кабелей и лазерных излучателей, то они обеспечивают полосу пропускания порядка 1 ГГц при длине линии 100 км.

Эффективность использования полосы пропускания определяется принятой схемой кодирования. В технологии FDDI (и 100BaseFX), например, применяется физическое кодирование по методу NRZI, при котором один бит передается за один такт синхронизации. Это означает, что каждые 4 бита полезной информации кодируются 5-битным символом, передаваемым за 5 тактов. Таким образом, коэффициент использования полосы пропускания составляет 4/5=0, 8, и для передачи данных со скоростью 100 Мбит/с требуется обеспечить передачу импульсов с частотой (полосой) 125 МГц.[5]

В технологиях современных поколений используется когерентное излучение с модуляцией частоты или фазы сигнала. При этом достигается пропускная способность, измеряемая гигабитами в секунду при длине в сотни километров без регенерации. Другое направление — солитоновая технология, основанная на передаче сверхкоротких (10 пс) импульсов-солитонов. Эти импульсы распространяются без искажения формы, и в идеальной линии (без затухания) дальность связи не ограничена при гигабитных скоростях передачи. Для этих технологий, пока не имеющих отношения к локальным сетям, пропускная способность линии определяется иными способами.

Вывод: в этой главе были представлены следующие вопросы: затухание, которое влияет на дальность передачи сигнала, виды затуханий, вследствие чего они возникают и как с ними бороться. Раскрыт вопрос о дисперсии, которая влияет на скорость передачи данных. Затронута тема о пропускной способности оптического волокна.

 







© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.