Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Закон противоречия в логике






Условием истинного познания выступает также требование непротиворечивости мышления. Суть его раскрывается в формально-логическом законе противоречия, который можно сформулировать следующим образом: в процессе рассуждения о каком-либо определенном предмете нельзя одновременно утверждать и отрицать что-либо в одном и том же отношении, в противном случае оба суждения не могут быть вместе истинными.
Закон противоречия принято выражать в виде формулы:
Где А и – два суждения (положительное и отрицательное), ^ - знак конъюнкции (читается как «и»), черта сверху означает отрицание всей формулы. Рассмотрим действие закона противоречия на следующем примере. Два суждения: «Иванов знает английский язык» и «Иванов не знает английского языка» не могут быть истинными, если относительно обоих суждений, во-первых, выполняется требование закона тождества (понятие «знать английский язык» определено); во-вторых, суждения относятся к одному и тому же времени и, в-третьих, утверждение и отрицание рассматриваются в одном и том же отношении (относятся к одному и тому же лицу). Противоречия не возникло бы, если бы речь шла о разных людях, но однофамильцах. То же можно сказать, если бы речь шла о разных временах: в одном случае Иванов – студент, в другом – он же, но уже доктор технических наук, 20 лет спустя. Существенным является то, что понимается под знанием английского языка; в одном случае это умение читать специальную литературу без словаря, в другом – способность работать в качестве переводчика. Мы видим, что здесь требуется выполнение закона тождества не только в отношении субъекта («Иванов»), но и предикатов в суждении («знает английский язык»).

Закон противоречия справедлив относительно любых видов противоположных суждений в обыденном и научном мышлении. Он играет важную роль в теории дедуктивного вывода и построении доказательства, поскольку выступает определяющим моментом в понимании и обосновании логической необходимости следования заключений из посылок. Следование заключения из посылок является логически необходимым лишь в том случае, когда при отрицании заключения мы не вступаем в противоречие с посылками умозаключения. (Эта ситуация будет рассмотрена в следующей лекции).

Закон противоречия играет важную роль в научной теории. Появление формально-логических противоречий в составе научной теории ставит под сомнение возможность ее обоснования и применения целиком всей этой теории на практике. В логике справедливо следующее правило: из логического противоречия (логически противоречивого выражения) следует любое суждение. Иначе говоря, если научная теория, использующая классическую дедуктивную логику, содержит логическое противоречие, то истинные и ложные положения выводимы в этой теории в равной мере. Использовать для практических целей такую теорию нецелесообразно. Подобные ситуации возникают нередко и в сфере нашей правовой теории, когда нормативные положения одних законодательных актов, будучи нечетко сформулированными, входят в противоречие с уже действующими законодательными актами, нормы которых следовало бы или скорректировать с учетом изменений, или отменить. Так как это не делается должным образом и вовремя, наше законодательство далеко не всегда является эффективным: оно создает возможность как превратного толкования законов, так и возможность их обхождения. Ясно, что в правовой науке и практике закон противоречия играет очень важную роль. Он выступает стимулом к усовершенствованию, а то и перестройке науки. Это можно проследить на примерах из области физики, математики и других наук.

В начале ХХ в. в физике возникла критическая ситуация, суть которой состояла в том, что квантовая механика (новое направление в физике) настаивала на двойственной природе микрочастицы, то есть электрон, например, рассматривался как частица и как волна одновременно, тогда как классическая механика Ньютона требовала рассматривать материальное тело как массу – основу природы. Масса (вещество) и волна (поле) казались противоположными субстанциями физической реальности. Нильс Бор, датский физик, ввел известный принцип, получивший название «принцип дополнительности», который «примирил» эти противоположности и стал общим принципов при изучении явлений микромира. Таким образом, стремление избежать противоречия «вещество-поле» привело к формулировке нового научного принципа.
Другой подобный пример из области математики. В конце Х! Х в. теория множеств Г. Кантора утвердилась как фундамент всего здания классической математики. Однако еще при жизни Г. Кантора и в последующее время в ней были обнаружены парадоксы, или антиномии. Под парадоксом логика понимает противоречие, полученное в результате внешне логически правильного рассуждения, приводящее к взаимно противоречащим заключениям. Наличие парадокса означает несостоятельность какой-либо из посылок (аксиом), хотя эту несостоятельность бывает трудно обнаружить, объяснить и тем более устранить. Еще в античном мире были обнаружены парадоксы, связанные с понятием истины. Наиболее интересным считается парадокс лжеца, приписываемый Эвбулиду. Его суть такова. Берется утверждение: «Высказывание, которое я сейчас произношу, ложно». Легко обнаружить, что это утверждение без противоречия нельзя считать ни истинным, ни ложным. Если предположить, что оно истинно, то мы придем к противоположному заключению, т.к. его ложность постулируется в самом утверждении. Если же допустить, что оно ложно, то мы придем к выводу, что оно должно быть истинным, поскольку мы действительно говорим, что признаем неправду. Возникает парадокс.

Среди множества парадоксов в связи с теорией множества Г. Кантора рассмотрим тот, который получил название парадокса Рассела-Цермело; он касается множества всех множеств, которые не содержат себя в качестве элемента. Сам Б. Рассел, английский логик, математик и философ, отмечал, что он пришел к открытию этого парадокса путем применения канторовского метода доказательства о несуществовании наибольшего кардинального числа к классу всех воображаемых объектов. Такой класс должен содержать себя в качестве члена. Но обычно класс не является собственным членом. Б. Рассел привел пример парикмахера, который бреет всех тех жителей деревни, которые не бреются сами. На вопрос, бреет ли он себя, нельзя дать никакого определенного ответа: ибо если он скажет «да», то он не войдет в класс тех, кто ходит к парикмахеру (они сами не бреются); если он скажет «нет», то он войдет в класс клиентов парикмахера, но сам им не окажется.

Этот и другие парадоксы теории множеств Г. Кантора поставили проблему пересмотра некоторых принципов математики и логики, ибо они были сформулированы на языке математики и логики и включали только такие термины, как множество или класс, кардинальные и ординальные числа и др. Ряд парадоксов был связан с использованием обычного языка, это так называемые семантические парадоксы(например, парадокс лжеца); их разрешение требует реконструкции существующего естественного языка, и прежде всего устранения из него двусмысленных и неопределенных выражений.

Парадоксы резко изменили отношение математиков к канторовской теории множеств. Среди них возникли различные направления и школы, каждая из которых по-своему стала решать вопросы обоснования математики и предлагала свои методы устранения парадоксов. Так математика обрела новые стимулы к развитию.

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.