Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Схемы с термостабилизацией






Несколько лучше обстоит дело в случае применения схем, показанных на рисунке 7.

Рисунок 7.

В схеме с коллекторной стабилизацией резистор смещения R1 подключен не к источнику питания, а к коллектору транзистора. В этом случае, если при увеличении температуры происходит увеличение обратного тока, транзистор открывается сильнее, напряжение на коллекторе уменьшается. Это уменьшение приводит к уменьшению напряжения смещения, подаваемого на базу через R1. Транзистор начинает закрываться, коллекторный ток уменьшается до приемлемой величины, положение рабочей точки восстанавливается.

Совершенно очевидно, что такая мера стабилизации приводит к некоторому снижению усиления каскада, но это не беда. Недостающее усиление, как правило, добавляют наращиванием количества усилительных каскадов. Зато подобная ООС позволяет значительно расширить диапазон рабочих температур каскада.

Несколько сложней схемотехника каскада с эмиттерной стабилизацией. Усилительные свойства подобных каскадов остаются неизменными в еще более широком диапазоне температур, чем у схемы с коллекторной стабилизацией. И еще одно неоспоримое преимущество, - при замене транзистора не приходится заново подбирать режимы работы каскада.

Эмиттерный резистор R4, обеспечивая температурную стабилизацию, также снижает усиление каскада. Это для постоянного тока. Для того, чтобы исключить влияние резистора R4 на усиление переменного тока, резистор R4 шунтирован конденсатором Cэ, который для переменного тока представляет незначительное сопротивление. Его величина определяется диапазоном частот усилителя. Если эти частоты лежат в звуковом диапазоне, то емкость конденсатора может быть от единиц до десятков и даже сотен микрофарад. Для радиочастот это уже сотые или тысячные доли, но в некоторых случаях схема прекрасно работает и без этого конденсатора.

Для того, чтобы лучше понять, как работает эмиттерная стабилизация, надо рассмотреть схему включения транзистора с общим коллектором ОК.

Схема с общим коллектором (ОК) Показана на рисунке 8. Эта схема является кусочком рисунка 2, из второй части статьи, где показаны все три схемы включения транзисторов.

Рисунок 8.

Нагрузкой каскада является эмиттерный резистор R2, входной сигнал подается через конденсатор C1, а выходной снимается через конденсатор C2. Вот тут можно спросить, почему же эта схема называется ОК? Ведь, если вспомнить схему ОЭ, то там явно видно, что эмиттер соединен с общим проводом схемы, относительно которого подается входной и снимается выходной сигнал.

В схеме же ОК коллектор просто соединен с источником питания, и на первый взгляд кажется, что к входному и выходному сигналу отношения не имеет. Но на самом деле источник ЭДС (батарея питания) имеет очень маленькое внутреннее сопротивление, для сигнала это практически одна точка, один и тот же контакт.

Более подробно работу схемы ОК можно рассмотреть на рисунке 9.

Рисунок 9.

Известно, что для кремниевых транзисторов напряжение перехода б-э находится в пределах 0, 5…0, 7В, поэтому можно принять его в среднем 0, 6В, если не задаваться целью проводить расчеты с точностью до десятых долей процента. Поэтому, как видно на рисунке 9, выходное напряжение всегда будет меньше входного на величину Uб-э, а именно на те самые 0, 6В. В отличие от схемы ОЭ эта схема не инвертирует входной сигнал, она просто повторяет его, да еще и снижает на 0, 6В. Такую схему еще называют эмиттерным повторителем. Зачем же такая схема нужна, в чем ее польза?

Схема ОК усиливает сигнал по току в h21э раз, что говорит о том, что входное сопротивление схемы в h21э раз больше, чем сопротивление в цепи эмиттера. Другими словами можно не опасаясь спалить транзистор подавать непосредственно на базу (без ограничительного резистора) напряжение. Просто взять вывод базы и соединить его с шиной питания +U.

Высокое входное сопротивление позволяет подключать источник входного сигнала с высоким импедансом (комплексное сопротивление), например, пьезоэлектрический звукосниматель. Если такой звукосниматель подключить к каскаду по схеме ОЭ, то низкое входное сопротивление этого каскада просто «посадит» сигнал звукоснимателя, - «радио играть не будет».

Отличительной особенностью схемы ОК является то, что ее коллекторный ток Iк зависит только от сопротивления нагрузки и напряжения источника входного сигнала. При этом параметры транзистора тут вообще никакой роли не играют. Про такие схемы говорят, что они охвачены стопроцентной обратной связью по напряжению.

Как показано на рисунке 9 ток в эмиттерной нагрузке (он же ток эмиттера) Iн = Iк + Iб. Принимая во внимание, что ток базы Iб ничтожно мал по сравнению с током коллектора Iк, можно полагать, что ток нагрузки равен току коллектора Iн = Iк. Ток в нагрузке будет (Uвх – Uбэ)/Rн. При этом будем считать, что Uбэ известен и всегда равен 0, 6В.

Отсюда следует, что ток коллектора Iк = (Uвх – Uбэ)/Rн зависит лишь от входного напряжения и сопротивления нагрузки. Сопротивление нагрузки можно изменять в широких пределах, правда, при этом особо усердствовать не надо. Ведь если вместо Rн поставить гвоздь – сотку, то никакой транзистор не выдержит!

Схема ОК позволяет достаточно легко измерить статический коэффициент передачи тока h21э. Как это сделать, показано на рисунке 10.

Рисунок 10.

Сначала следует измерить ток нагрузки, как показано на рисунке 10а. При этом базу транзистора никуда подключать не надо, как показано на рисунке. После этого измеряется ток базы в соответствии с рисунком 10б. Измерения должны в обоих случаях производиться в одних величинах: либо в амперах, либо в миллиамперах. Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях. Чтобы узнать статический коэффициент передачи тока достаточно ток нагрузки разделить на ток базы: h21э ≈ Iн/Iб.

Следует отметить, что при увеличении тока нагрузки h21э несколько уменьшается, а при увеличении напряжения питания увеличивается. Эмиттерные повторители часто строятся по двухтактной схеме с применением комплементарных пар транзисторов, что позволяет увеличить выходную мощность устройства. Такой эмиттерный повторитель показан на рисунке 11.

Рисунок 11.

Рисунок 12.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.