Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Указания к решению задачи 3






Задача 3 относится к расчету выпрямителей переменного тока, собранных на полупроводниковых диодах. Подобные схемы широко применяются в различных электронных устройствах и приборах. При решении задач следует помнить, что основными параметрами полупроводниковых диодов являются допустимый ток Iдоп, на который рассчитан данный диод, и обратное напряжение Uобр, выдерживаемое диодом без пробоя в непроводящий период.

Обычно при составлении реальной схемы выпрямителя задаются значением мощности потребителя Ро, Вт, получающего питание от данного выпрямителя, и выпрямленным напряжением Uо, В, при котором работает потребитель постоянного тока. Отсюда нетрудно определить ток потребителя Iо = Pо/Uо. Сравнивая ток потребителя с допустимым током диода Iдоп, выбирают диоды для схем выпрямителя. Следует учесть, что для однополупериодного выпрямителя ток через диод равен току потребителя, т.е. надо соблюдать условие Iдоп ≥ Iо. Для двухполупериодной и мостовой схем выпрямления тока через диод равен половине тока потребителя, т.е. следует соблюдать условие Iдоп ≥ 0.5Iо. Для трехфазного выпрямителя ток через диод составляет треть

 

тока потребителя, следовательно, необходимо, чтобы Iдоп ≥ I0

Напряжением, действующее на диод в непроводящий период Ub, также зависит от той схемы выпрямления, которая применяется в конкретном случае. Так, для однополупериодного и двухполупериодного выпрямителя Ub = π Uо = = 3.14 Uо, для мостового выпрямителя Ub = 2π Uо /2 = 1.57 Uо, а для трехфазного выпрямителя Ub = 2.1 Uо. При выборе диода, следовательно, должно соблюдаться условие Uобр ≥ Ub.

Рассмотрим примеры на составление схем выпрямителей.

Пример 3.1. Составить схему мостового выпрямителя, использовав один из четырех диодов: Д218, Д222, КД202Н, Д215Б. Мощность потребителя Ро = 300В, напряжение потребителя Uо = 200В.

Р е ш е н и е. 1. Выписываем из табл.2.8 параметры указанных диодов и записываем их в таблицу.

Типы диодов Iдоп,. А Uобр, В Типы диодов Iдоп, А Uобр, В
Д218 0.1   КД202Н    
Д222 0.4   Д215Б    

 

2. Определяем ток потребителя Iо = Pо/ Uо = 300/200 = 1.5 A.

3. Находим напряжение, действующее на диод в непроводящий период для мостовой схемы выпрямителя, Ub = 1.57 Uo = 1.57 * 200 = 314В.

4. Выбираем диод из условия Iдоп > 0.5Iо > 0.5 * 1.5 > 0.75 А, Uобр > UВ ≥ 314 В. Эти условиям удовлетворяет диод КД202Н: Iдоп = 1.0 > 0.75А; Uобр = 500 > 314В.

Диоды Д218 и Д222 удовлетворяют напряжению (1000 и 600 больше 314В), но не подходят по допустимому току (0.1 и 0.4 меньше 0.75А). Диод 215Б, наоборот, подходит по допустимому току (2 > 0.75А), но не подходит по обратному напряжению (200 < 314В).

5. Составляем схему мостового выпрямителя (рис. 3). В этой схеме каждый из диодов имеет параметры диода КД202Н; Iдоп = 1А; Uобр = 500В.

рис.3 рис.4

Пример 3.2. Для питания постоянным током потребителя мощностью Ро = =250Вт при напряжении Uо = 100В необходимо собрать схему двухполупериодного выпрямителя, использовав стандартные диоды типа Д243Б.

Р е ш е н и е. 1. Выписываем из таблицы 2.8 параметры диода Iдоп = 2А; Uобр = 200В.

2. Определяем ток потребителя: Iо = Pо/ Uо = 250/100 = 2.5 A.

3. Определяем напряжение, действующее на диод в непроводящий период:

UВ = 3.14 Uо = 3.14 * 100 = 314 B.

4. Проверяем диод по параметрам Iдоп и Uобр. Для данной схемы диод должен удовлетворять условиям Uобр ≥ UВ и Iдоп > 0.5 Iо. В данном случае первое условие не соблюдается (200< 314), т.е. Uобр < UВ; второе выполняется

(0.51 Iо = 0.5 * 2.5 = 1.25 < 2 A).

5. Составляем схему выпрямителя. Чтобы выполнялось условие Uобр > UВ, необходимо два диода соединить последовательно, тогда Uобр = 200 * 2 = = 400 > 314В. Полная схема рис. 4.

Пример 3.3. Для питания постоянным током потребителя мощностью Ро = 20В необходимо собрать схему однополупериодного выпрямителя, использовав имеющиеся стандартные диоды Д242А.

Р е ш е н и е. 1. Выписываем из таблицы 2.8 параметры диода: Iдоп = 10А, Uобр = 100В.

2. Определяем ток потребителя Iо = Pо/ Uо = 300/200 = 15 A.

3. Определяем напряжение, действующее на диод в непроводящий период: Ub = 3.14 Uo = 3.14 * 20 = 63В.

4. Проверяем диод по параметра Iдоп и Uобр. Для данной схемы диод должен удовлетворять условиям Uобр > Ub, Iдоп > Iо. В данном случае второе условие не соблюдается (10 < 15А, т.е Iдоп < Iо). Первое условие выполняется (100 > 63В).

5. Составляем схему выпрямителя. Чтобы выполнялось условие Iдоп > Iо, надо два диода соединить параллельно, тогда Iдоп = 2 * 10 = 20А; 20 > 15А. Полная схема выпрямителя приведена на рис. 5.

Пример 3.4. Для составления схемы трехфазного выпрямителя на трех диодах заданы диоды Д243. Выпрямитель должен питать потребитель с Uо = = 150В. Определить допустимую мощность потребителя и пояснить составления схемы выпрямителя.

Р е ш е н и е. 1. Выписываем из таблицы 2.8 параметры диода: Iдоп = 5А, Uобр = 200В.

2. Определяем допустимую мощность потребителя. Для трехфазного выпрямителя Iдоп > 1 Iо, т.е. Ро = 3Uо Iдоп 3 * 150 * 5 = 2250 Вт.

Следовательно, для данного выпрямителя Ро ≥ 2250 Вт.

3. Определяем напряжение, действующее на диод в непроводящий период:

Ub = 2.1 Uo = 2.1 * 150 = 315В.

 

4. Составляем схему выпрямителя. Проверяем диод по условию. В данном случае это условие не выполняется (200 < 315В). Чтобы это условие выполнялось, необходимо в каждом плече выпрямителя два диода соединить последовательно, тогда Uобр = 200 * 2 = 400В; 400 > 315В. Полная схема выпрямителя приведена рис. 6.

 

Рис.5

 

Рис.6

Указания к решению задачи 4.

В этой задаче необходимо выполнить арифметические операции с двоичными числами, которые используются при работе ЭЦВМ. Характерной особенностью двоичной системы счисления является то, что арифметические действия в ней очень просты.

При сложении двоичных чисел пользуются следующим правилом:

0 + 0 = 0; 1 + 0 = 1

0 + 1 = 1; 1 + 1 = 10 (два).

При сложении необходимо учитывать, что 1 + 1 дают нуль в данном разряде и единицу переноса в следующий разряд.

Пример 4.1. Сложить в двоичной системе числа 38 и 28.

1. Переводим данные числа в двоичную систему. Для перевода чисел из одной системы счисления в другую пользуются следующим правилом. Чтобы перевести число из одной системы счисления в другую, необходимо последовательно делить это число на основание новой системы до тех пор, пока не получится частное, меньшее делителя. Число в новой системе следует записывать в виде остатков деления, начиная с последнего, т.е. справа налево. Последнее частное дает старшую цифру числа в новой системе счисления. Напомним, что основание двоичной системы –2, десятичной –10.

 

 

2. Выполняем операцию сложения

100110 38

+ 11100 + 28

---------- ------

1000010 66

 

3. Проверяем решение

1000010 = 1 * 26 + 0 * 25 + 0 * 24 + 0 * 23 + 0 * 22 + 0 * 21 + 0 * 20 = 66.

Приводим правила вычитания двоичных чисел:

0 – 0 = 0; 1 – 1 = 0

1 - 0 = 1; 10 – 1 = 1.

При вычитании многоразрядных двоичных чисел может возникнуть необходимость заема единицы в ближайшем старшем разряде, что дает две единицы младшего разряда. Если в соседних старших разрядах стоят нули, то приходится занимать единицу через несколько разрядов. При этом единица, занятая в ближайшем значащем старшем разряде, дает две единицы в младшем разряде и единицы во всех нулевых разрядах, стоящих между младшим и тем старшим разрядом, у которого брали заем.

Например:

10010 (18)

- 101 (5)

----------------

1101 (13)

Проверяем решение:

1101 = 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20 = 1 * 8 + 1 * 4 + 0 * 2 + 1 * 1 = 13.

 

 

Приводим правила умножения двоичных чисел:

0 * 0 = 0; 1 * 0 = 0

0 * 1 = 0; 1 * 1 = 1.

Умножение двоичных чисел производят по тем же правилам, что и для десятичных чисел. При этом используют таблицу умножения и сложения. Умножение многоразрядных двоичных чисел сводится к умножению множимого на каждый разряд множителя, последующему сдвигу множимого или множителя и суммированию получающихся частичных произведений.

Например,

11011 (27)

* 101 (5)

-------------------

+ 11011

-------------------

1000011 (135)

Проверяем решение:

10000111 = 1 * 27 + 0 * 26 + 0 * 25 + 0 * 24 + 0 * 23 + 1 * 22 * 1 * 21 + 1 * 20 =

= 1 * 128 + 0 * 64 + 0 * 32 + 0 * 16 + 0 * 8 + 1 * 4 + 1* 2 + 1 * 1 = 135

При делении двоичных чисел используются таблицу умножения и вычитания. Правила деления аналогичны делению в десятичной системе и сводятся к выполнению умножений, вычитаний и сдвигов.

Например, разделить 117 на 9;

1110101 1001

- 1001 1101

- 1001

-1001

117 9

- 9 13

-----

27

Проверяем решение:

1101 = 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20 = 1 * 8 + 1 * 4 + 0 * 2 + 1 * 1 = 13

Указания к решению задачи 5.

Эта задача относится к расчету параметров и характеристик полупроводниковых триодов – транзисторов. При включении транзистора с общим эмиттером управляющим является ток базы Iб, а при включении с общей базой – ток эмиттера Iэ.

В схеме с общей базой связь между приращениями тока эмиттера ∆ Iэ и тока коллектора ∆ Iк характеризуется коэффициентом передачи тока h216:

h 21б = ∆ Iк/∆ IЭ при Uкб = const,

где Uкб – напряжение между коллектором и базой.

Коэффициент передачи всегда меньше единицы. Для современных биполярных транзисторов h21б = 0.9 ÷ 0.995. При включении с общей базой ток коллектора Iк = h21б Iэ.

Коэффициент усиления по току h21э в схеме включения транзистора с общим эмиттером определяется как отношение приращения тока коллектора Δ Iк к приращению тока базы Δ Iб. Для современных транзисторов h21э имеет значение 20 – 200.

h 21э = ∆ Iк/∆ Iб при Uкэ = const,

 

где Uкэ – напряжение между коллектором и эмиттером.

Ток коллектора при включении с общим эмиттером Iк = h21эIб. Между коэффициентами h21б и h21э существует следующая связь:

h21б = h 21э или h21э = h 21б

1 + h21э 1- h21б

Мощность, рассеиваемая на коллекторе транзистора, Pк = Uкэ Iк. Рассмотрим примеры на расчет параметров транзистора.

Пример 5.1. Для транзистора, включенного по схеме с общим эмиттером, определить коэффициент усиления h21э по его входной характеристике (см. рис.5.17) и выходным характеристикам (см. рис. 5.18), если Uбэ = 0.4 В; Uкэ = 25В. Подсчитать также коэффициент передачи по току h21б и мощность Pк на коллекторе.

Р е ш е н и е. 1. Определяем по входной характеристике при Uбэ = 0.4 В ток базы Iб = 500 мкА.

2. Находим по выходным характеристикам для Uкэ = 25В и Iб = 500мкА ток коллектора Iк = 36 мА.

3. На выходных характеристиках (рис.5.1) строим отрезок АВ, из которого находим:

Δ Iк = АВ = Iк1 - Iк2 = 36 – 28 = 8 мА;

Δ Iб = АВ = Iб1 - Iб2 = 500 – 400 = 100 мкА = 0.1 мА.

4. Определяем коэффициент усиления

h21э = Δ Iк/ Δ Iб = 8/0.1 = 80.

5. Коэффициент передачи по току

h21б = h21э/(h21э + 1) = 80/(80 + 1) = 0.98.

6. Мощность на коллекторе

Рк = Uкэ Iк = 25 * 36 = 900 мВт = 0.9 Вт.

Пример 5.2. Для транзистора, включенного по схеме с общим эмиттером, найти ток базы Iб, ток коллектора Iк и напряжение на коллекторе Uкэ, если напряжение Uбэ = 0.3В; напряжение питания Ек = 20В; сопротивление нагрузки в цепи коллектора Rк = 0.8 кОм. Входная и выходные характеристики транзистора приведены на рис. 5.19., 5.20.

Перед решением этого примера приведем некоторые пояснения. Для коллекторной цепи усилительного каскада в соответствии со вторым законом Кирхгофа можно написать уравнение: Ек = Uкэ + Iк Rк, т.е. сумма напряжений на резисторе Rк и коллекторного напряжения Uкэ всегда равна Ек – ЭДС источника питания.

Расчет такой нелинейной цепи, т.е. определение Iк и Uкэ для различных значений токов базы Iб и сопротивления резистора Rк, можно произвести графически. Для этого на семействе выходных характеристик необходимо провести из точки Ек на оси абсцисс вольт-амперную характеристику резистора Rк, удовлетворяющую уравнению: Uкэ = Eк – Iк Rк.

Эту характеристику удобно строить по двум точкам: Uкэ = Ек при Iк = 0 на оси абсцисса Iк = Ек/ Rк при Uкэ = 0 на оси ординат.

Построенную таким образом вольт-амперную характеристику коллекторного резистора Rк называют линией нагрузки. Точки ее пересечения с выходными характеристиками транзистора дают графическое решение уравнения для данного резистора Rк и различных значений тока базы Iб.

Р е ш е н и е. Откладываем на оси абсцисс точку Uкэ = Ек = 20В, а на оси ординат – точку, соответствующую Iк = Ек/ Rк = 20/800 = 0.025мА. Здесь Rк =

= 0.8кОм = 800 Ом.

2. Соединяем эти точки прямой и получаем линию нагрузки.

3. Находим на входной характеристике для Uбэ = 0.3 В ток базы Iб = 250мкА.

4. Находим на выходных характеристиках точку А при пересечении линии нагрузки с характеристикой, соответствующей Iб = 250мкА.

5. Определяем для точки А ток коллектора Iк = 17мА и напряжение Uкэ= 7В.

Пример5. 3. Мощность на коллекторе транзистора Рк = 6Вт, напряжение на коллекторе Uкэ = 30В; напряжение питания Ек = 40В. Используя выходные характеристики рис.2.2, определить ток базы Iб, ток коллектора Iк, коэффициент усиления h21э и сопротивление нагрузки Rк.

Р е ш е н и е. 1. Определяем ток коллектора

Iк = Рк/ Uкэ = 6/30 = 0.2А.

2. Находим на выходных характеристиках точку А, соответствующую Iк = 0.2А и Uкэ = 30В. Из рисунка видно, что точка А лежит на характеристике для Iб = 2мА.

3. Соединяем прямой точку А и точку на оси абсцисс, соответствующую Ек = 40В. На пересечении прямой с осью ординат получаем точку Iк1 = 0.8А.

4. Определяем Rк = Ек/ Iк1 = 40/0.8 = 50 Ом.

На выходных характеристиках строим отрезок АВ, из которого находим

Δ Iк = АВ = 0.4 - 0.2 = 0.2А = 200мА;

Δ Iб = АВ = 4 –2 = 2мА.

6. Определяем коэффициент усиления транзистора

h21э = Δ Iк/ Δ Iб = 200/2 = 100.

П р и м е ч а н и е. При решении задачи 5 обратите внимание, что в таблицах вариантов контрольной работы не указана размерность токов базы Iб и токов коллектора Iк, так как на рис. 5.1 – 5.20, где изображены входные и выходные характеристики транзисторов, эти токи имеют различную размерность: ампер – А, миллиамперы – мА и микроамперы – мкА.

 

 

ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

1. Основные характеристики электрического поля: напряженность электрического поля, электрическое напряжение.

2. Проводники и диэлектрики в электрическом поле.

3. Краткие сведения о различных электроизоляционных материалах и их практическое использование.

4. Электрическая емкость. Конденсаторы. Соединения конденсаторов.

5. Общие сведения об электрических цепях.

Электрический ток: разновидности, направление, величина и плотность.

6. Электрическая проводимость и сопротивление проводников.

7. Законы Ома.

8. Проводниковые материалы: основные характеристики, материалы с малым удельным сопротивлением, сверхпроводники, материалы с большим удельным сопротивлением.

9. Основные элементы электрических цепей постоянного тока. Режимы электрических цепей.

10. Источники и приемники электрической энергии, их мощность и КПД.

11. Законы Кирхгофа.

12. Нелинейные электрические цепи постоянного тока.

13. Основные свойства и характеристики магнитного поля.

14. Индуктивность: собственная, катушки, взаимная. Коэффициент магнитной связи.

15. Электромагнитные силы.

16. Магнитные свойства вещества.

17. Электромагнитная индукция.

18. Принципы преобразования механической энергии в электрическую и электрическую энергию в механическую.

19. Общие сведения об электрических измерениях и электроизмерительных приборах. Классификация электроизмерительных приборов.

20. Измерение тока. Приборы, погрешности, расширение пределов измерения амперметров.

21. Измерение напряжения. Приборы, погрешности, расширение пределов измерения вольтметрами.

22. Измерение электрического сопротивления. Косвенные и прямые измерения.

23. Переменный ток: определения, получение. Характеристики.

24. Векторная диаграмма и ее обоснование. Элементы и параметры электрических цепей переменного тока.

25. Трехфазная система электрических цепей трехфазная цепь.

26. Соединение обмоток генератора. Фазные и линейные напряжения, соотношения между ними.

27. Соединение потребителей, применение этих соединений.

28. Назначение трансформаторов. Классификация, конструкция.

29. Принцип действия и устройство трансформатора. Режимы работы.

30. Типы трансформаторов и их применение: трехфазные, многообмоточные, сварочные, измерительные, автотрансформаторы.

31. Назначение машин переменного тока и их классификация. Устройство машин переменного тока.

32. Пуск и регулировка частоты вращения двигателей переменного тока.

33. Однофазный электродвигатель.

34. Устройство и принцип действия машины постоянного тока.

35. Генераторы постоянного тока.

36. Электродвигатели постоянного тока.

37. Понятие об электроприводе. Классификация.

38. Выбор электродвигателей по техническим характеристикам.

39. Нагрев и охлаждение электродвигателей. Режимы работы электродвигателей.

40. Схемы управления электродвигателей: общие сведения, магнитные пускатели, релейно-контактная аппаратура

41. Схемы электроснабжения потребителей электрической энергии, общая схема электроснабжения, понятие об энергетической системе и электрической системе.

42. Простейшие схемы электроснабжения промышленных предприятий, схемы осветительных электросетей.

43. Элементы устройства электрических сетей: воздушные линии, кабельные линии, электропроводки, трансформаторные подстанции.

44. Выбор проводов и кабелей.

45. Эксплуатация электрических установок: компенсация реактивной мощности, экономия электроэнергии.

46. Защитное заземление, защита от статического электричества.

 

48. Проводимость полупроводников. Виды, характеристики.

49. Электро-дырочный переход. Определение. ВАХ.

50. Полупроводниковый диод. Конструкция, назначение, режимы работы, виды.

51. Биполярный транзистор. Конструкция, назначение, режимы работы, виды.

52. Полевой транзистор. Конструкция, назначение, режимы работы, виды.

53. Тиристор. Виды, назначение, конструкция, режимы работы.

54. Интегральные микросхемы. Классификация, характеристики.

55. Логические микросхемы и их резисторное, диодное, транзисторное решение.

56. Выпрямители. Виды однофазных выпрямителей, характеристики, работа.

57. Сглаживающие фильтры. Виды, характеристики, работа.

58. Регулируемые выпрямители. Схема, работа.

59. Стабилизаторы напряжения. Виды, работа, характеристики.

60. Электронные усилители. Конструкция, назначение, виды.

61. Электронные генераторы синусоидального напряжения. Виды, особенности, работа.

62. Электронные генераторы линейно-меняющегося напряжения. Схема, назначение, работа.

61. Электронный осциллограф. Назначение, функциональная схема, работа.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.