Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Гидравлическая сеть






Один и тот же насос может работать с различными гидравлическими сетями, как показано на Рис.8.

На схеме “ а ” насос поднимает жидкость на высоту h; на схеме “ б ” перемещает жидкость по горизонтальному трубопроводу; на схеме “в ” поднимает жидкость в цилиндр, на поршень которого действует сила R; на схеме “ г ” перемещает жидкость в закрытый резервуар, расположенный ниже оси насоса с избыточным давлением на свободной поверхности.

Очевидно, что в разных схемах для перемещения жидкости требуется различная энергия (напор), в то же время зависимость напора насоса от подачи определяется его напорной характеристикой. Как же “совместить” интересы насоса и гидравлической сети? Для этого нужно определить рабочую точку насоса.

Рабочая точка насоса - это точка пересечения характеристики насоса с характеристикой гидравлической сети.

Характеристика гидравлической сети - зависимость удельной энергии (напора), необходимой для перемещения жидкости в данной системе, от расхода жидкости в ней.

 

Иллюстрация включения насоса в различные гидравлические сети

Рис.8

 

Уравнение гидравлической сети выражает закон сохранения энергии для начального и конечного сечений гидравлической системы. Энергия, которую необходимо передать жидкости, записывается при этом в левую часть уравнения в виде потребного напора H потр.

Характеристику гидравлической сети часто называют кривой потребного напора.

Для любой насосной трубопроводной системы закон сохранения энергии имеет вид:

  eн + H потр = eк + hн-к, (11)

где eн - удельная (на единицу веса) энергия жидкости в начальном сечении н-н, eк - удельная (на единицу веса) энергия жидкости в конечном сечении к-к, H потр - потребный напор насоса, а h н-к - потери удельной энергии на преодоление гидравлических сопротивлений.

Чтобы получить уравнение гидравлической сети, необходимо:

1. Выбрать сечения для составления уравнения сети и горизонтальную плоскость О - О отсчета величин z, которую удобно совместить с начальным сечением.

2.Записать закон сохранения энергии (11), раскрывая содержание энергий eн и eк по уравнению Бернулли:

    (12)

3. Из уравнения (12) определить потребный напор насоса:

    (13)

4. Раскрыть содержание слагаемых уравнения (13) для данной гидравлической системы. Здесь:

zн, pн, Jн - соответственно вертикальная отметка относительно плоскости 0-0, абсолютное давление и средняя скорость в начальном сечении потока, а zк, pк, Jк -то же в конечном сечении. Если сечение расположено ниже плоскости 0-0, отметка z берется со знаком минус.

Потери энергии hн-к представляют собой сумму потерь энергии на трение по длине и местных гидравлических сопротивлений:

  (14)

где J - скорость движения жидкости в трубопроводе, коэффициенты местных сопротивлений xi определяются по справочным данным, а коэффициент гидравлического трения l по следующим формулам:

l=64/Re - ламинарный режим (15)
l=0, 11(68/Re+Dэ/d)0, 25 - турбулентный режим (16)

5. Выразить скорости движения и число Re через расход жидкости:

  Jн=Q/wн, Jк=Q/wк, J=Q/wтр, Re=4Q/pdn, (17)

где wн, wк, wтр - площади соответствующих сечений потока, d - диаметр трубопровода, а n- кинематический коэффициент вязкости жидкости.

Результат выполнения пунктов 4 и 5, например, для схемы Рис.8”а” имеет вид:

.   (18)

6. Анализируем уравнение (18). Поскольку площади начального и конечного сечений много больше площади сечения трубопровода, первыми двумя слагаемыми в скобках уравнения (18) можно пренебречь. Тогда:

  (19)

7. Изображаем уравнение сети (19) на том же графике, что и напорная характеристика насоса и находим точку их пересечения.

Для построения характеристики сети задаемся значениями расхода Q в диапазоне подач насоса, начиная от нуля, подставляем эти значения в уравнение (19) и определяем H. При решении задачи в общем виде (без численных значений), характеристику сети проводим качественно, по виду функции (19).

 

Hн
Qн
H, м
Q, л/с

Рис.9

 

В нашем случае при Q=0, H=h (допустим 40м, Рис.9). Далее, при увеличении расхода Q до Qкр имеет место ламинарный режим движения в трубе, коэффициент трения l обратно пропорционален расходу (определяется по формуле (15)). При этом в уравнении (19) первое слагаемое справа (h)- постоянно, второе слагаемое (потери по длине) пропорционально Q в первой степени, в третье слагаемое (местные потери) пропорционально Q2. В итоге характеристика сети имеет вид параболы.

На пересечении характеристик насоса и сети определяется точка, в которой напор насоса равен потребному. Это и есть рабочая точка насоса в данной гидравлической сети. Её координаты - Hн и Qн.

При подаче Qн на кривой к.п.д. определяется коэффициент полезного действия насоса, и далее, мощность на валу насоса, по которой подбирается приводной двигатель.

На Рис.10 показаны характеристики гидравлических сетей, изображенных на Рис.8. Уравнения сетей имеют вид:

 

 

Сеть Уравнение Величина сi
а .     h
  б .      
в        
г    

H, м
в
C
Qc
а
Q, л/с
св
сa
г
б
сг

Рис.10.

Анализ показывает, что при ламинарном режиме движения жидкости в трубопроводе и при отсутствии местных гидравлических сопротивлений (сеть” б ”, Рис.8), характеристика сети представляет собой прямую линию (линия “ б ”, Рис.10).

Точка пересечения характеристики сети с осью абсцисс (точка С, линия г) определяет расход при движении жидкости самотеком, то есть за счет разности геометрических высот h (сеть “ г ”, Рис.8).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.