Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Магнитное поле проводников различной формы.






Магнитное поле прямолинейного тока наблюдают, продев сквозь расположенный горизонтально лист картона вертикальный прямолинейный провод, представляющий собой часть электрической цепи. Опилки-стрелочки при замыкании тока в цепи и после легкого постукивания по листу образуют цепочки в виде окружностей с общим центром на оси тока. Поэтому магнитное поле электрического тока графически изображают в виде линий магнитной индукции, аналогичных линиям напряженности электростатического поля. Линии магнитной индукции представляют собой окружности с центрами на оси тока, расположенные в плоскостях, перпендикулярных направлению тока. Их направление определяют по правилу правого винта: при поступательном движении винта в направлении тока его вращение указывает направление магнитного поля этого тока.
Различие между линиями магнитной индукции и линиями напряженности электростатического поля: первые замкнуты и окружают электрический ток; вторые – разомкнуты, начинаются на поверхности положительно заряженных тел и оканчиваются на поверхности отрицательно заряженных.

 

 
 

 

Магнитное поле витка с током, или контура тока, показано рисунке(кружок с точкой означает, что в этом сечении ток направлен перпендикулярно плоскости рисунка к нам, а кружок с крестом - что ток направлен от нас). Направление линий магнитной индукции вдоль оси витка укажет магнитная стрелка, помещенная в его центре. Две противоположные стороны обтекаемой током поверхности можно сопоставить с двумя полюсами магнитной стрелки: сторону, из которой линии магнитной индукции выходят – с северным полюсом магнитной стрелки, а в которую они входят – с южным. Направление магнитного поля витка с током можно определить также по правилу правого винта: если поместить острие винта в центре витка и вращать винт в направлении тока, то его поступательное движение укажет направление линий магнитной индукции. Таким образом, существует взаимная связь направлений тока в замкнутом проводнике и его магнитного поля, их «сцепленность».

 

 

Линии магнитной индукции катушки с током, или соленоида, входят в катушку со стороны ее южного магнитного полюса и выходят из северного. Внутри катушки, длина которой во много раз больше ее диаметра, магнитное поле однородно, т. е. линии магнитной индукции параллельны и плотность их одинакова. Магнитное поле постоянного магнита можно наблюдать, насыпав железные опилки на лист картона, положенный на магнит. Вне прямого магнита оно похоже на магнитное поле катушки с током. С помощью железных опилок можно наблюдать магнитное поле только вне постоянного магнита.Но линии магнитной индукции продолжаются и внутри постоянного магнита и замыкаются, как показано на рисунке. 7 Задачи на закрепление изученной темы. 1 Прямой проводник длиной 15 см помещён в однородное магнитное поле с индукцией 0, 4 Тл, направленной перпендикулярно направлению тока. Сила тока, протекающего по проводнику, равна 6 А. Найдите силу Ампера, действующую на проводник. 2 Индукция однородного магнитного поля В = 0, 3 Тл направлена в положительном направлении оси Х. Найдите модуль и направление силы Лоренца, действующей на протон, движущийся в положительном направлении оси Y со скоростью ʋ =5∙ 106 м/с. (заряд протона е+ = 1, 6∙ 10-19 Кл). 3 В проводнике с длиной активной части 8 см сила тока равна 50 А. Он находится в однородном магнитном поле с индукцией 20 мТл. Какую работу совершил источник тока, если проводник переместился на 10 см перпендикулярно линиям индукции?

 

 

Дополнительная информация

3
Рисунок 4.18.3. Движение заряженных частиц в вакуумной камере циклотрона.

Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте. Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц.

Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ. Однородные магнитные поля используются во многих приборах и, в частности, в масс-спектрометрах – устройствах, с помощью которых можно измерять массы заряженных частиц – ионов или ядер различных атомов.

Масс-спектрометры используются для разделения изотопов, то есть ядер атомов с одинаковым зарядом, но разными массами (например, 20Ne и 22Ne). Простейший масс-спектрометр показан на рис. 4.18.4. Ионы, вылетающие из источника S, проходят через несколько небольших отверстий, формирующих узкий пучок. Затем они попадают в селектор скоростей, в котором частицы движутся в скрещенных однородных электрическом и магнитном полях. Электрическое поле создается между пластинами плоского конденсатора, магнитное поле – в зазоре между полюсами электромагнита. Начальная скорость заряженных частиц направлена перпендикулярно векторам и На частицу, движущуюся в скрещенных электрическом и магнитном полях, действуют электрическая сила и магнитная сила Лоренца. При условии E = υ B эти силы точно уравновешивают друг друга. Если это условие выполняется, частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, движущиеся со скоростью υ = E / B. Далее частицы с одним и тем же значением скорости попадают в камеру масс-спектрометра, в которой создано однородное магнитное поле Частицы движутся в камере в плоскости, перпендикулярной магнитному полю, под действием силы Лоренца. Траектории частиц представляют собой окружности радиусов R = mυ / qB'. Измеряя радиусы траекторий при известных значениях υ и B' можно определить отношение q / m. В случае изотопов (q1 = q2) масс-спектрометр позволяет разделить частицы с разными массами. Современные масс-спектрометры позволяют измерять массы заряженных частиц с точностью выше 10–4.

4
Рисунок 4.18.4. Селектор скоростей и масс-спектрометр.

Если скорость частицы имеет составляющую вдоль направления магнитного поля, то такая частица будет двигаться в однородном магнитном поле по спирали. При этом радиус спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ ┴ вектора а шаг спирали p – от модуля продольной составляющей υ || (рис. 4.18.5).

5
Рисунок 4.18.5. Движение заряженной частицы по спирали в однородном магнитном поле.

Таким образом, траектория заряженной частицы как бы навивается на линии магнитной индукции. Это явление используется в технике для магнитной термоизоляции высокотемпературной плазмы, то есть полностью ионизированного газа при температуре порядка 106 K. Вещество в таком состоянии получают в установках типа «Токамак» при изучении управляемых термоядерных реакций. Плазма не должна соприкасаться со стенками камеры. Термоизоляция достигается путем создания магнитного поля специальной конфиругации. В качестве примера на рис. 4.18.6 изображена траектория движения заряженной частицы в магнитной «бутылке» (или ловушке).

6
Рисунок 4.18.6. Магнитная «бутылка». Заряженные частицы не выходят за пределы «бутылки». Магнитное поле «бутылки» может быть создано с помощью двух круглых катушек с током.

Аналогичное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Быстрые заряженные частицы из космоса (главным образом от Солнца) «захватываются» магнитным полем Земли и образуют так называемые радиационные пояса (рис. 4.18.7), в которых частицы, как в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за времена порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния. Радиационные пояса Земли простираются от расстояний порядка 500 км до десятков земных радиусов. Следует вспомнить, что южный магнитный полюс Земли находится вблизи северного географического полюса (на северо-западе Гренландии). Природа земного магнетизма до сих пор не изучена.

7
Рисунок 4.18.7. Радиационные пояса Земли. Быстрые заряженные частицы от Солнца (в основном электроны и протоны) попадают в магнитные ловушки радиационных поясов. Частицы могут покидать пояса в полярных областях и вторгаться в верхние слои атмосферы, вызывая полярные сияния.





© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.