Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Уравнение непрерывности электрического тока






Представим себе, в некоторой проводящей среде, где течет ток, замкнутую поверхность S. Для замкнутых поверхностей векторы нормалей, а следовательно, и векторы принято брать наружу, поэтому интеграл дает заряд, выходящий в единицу времени наружу из объема V, охваченного поверхностью S. Мы знаем, что плотность постоянного электрического тока одинакова по всему поперечному сечению S однородного проводника. Поэтому для постоянного тока в однородном проводнике с поперечным сечением S сила тока:

  (7.3.1)  

Из (7.3.1) и постоянства значения I во всех участках цепи постоянного тока следует, что плотности постоянного тока в различных поперечных сечениях 1 и 2 цепи обратно пропорциональны площадям и этих сечений (рис. 7.2):

  . (7.3.2)  

Рис. 7.2

Пусть S – замкнутая поверхность, а векторы всюду проведены по внешним нормалям . Тогда поток вектора сквозь эту поверхность S равен электрическому току I, идущему вовне из области, ограниченный замкнутой поверхностью S. Следовательно, согласно закону сохранения электрического заряда, суммарный электрический заряд q, охватываемый поверхностью S, изменяется за время на , тогда в интегральной форме можно записать:

  . (7.3.3)  

Это соотношение называется уравнением непрерывности. Оно является, по существу, выражением закона сохранения электрического заряда.

Дифференциальная форма записи уравнения непрерывности записывается так:

  или (7.3.4)  

В случае постоянного тока, распределение зарядов в пространстве должно оставаться неизменным:

следовательно,

  (7.3.5)  

это уравнение непрерывности для постоянного тока (в интегральной форме).

Линии в этом случае нигде не начинаются и нигде не заканчиваются. Поле вектора не имеет источника. В дифференциальной форме уравнение непрерывности для постоянного тока .

Если ток постоянный, то избыточный заряд внутри однородного проводника всюду равен нулю. В самом деле, т.к. для постоянного тока справедливо уравнение , то

Избыточный заряд может появиться только на поверхности проводника в местах соприкосновения с другими проводниками, а также там, где проводник имеет неоднородности.

 

 

ЭДС

Электродвижущая сила.
Роль источника тока: разделить заряды за счет совершения работы сторонними силами. Любые силы, действующие на заряд, за исключением потенциальных сил электростатического происхождения (т. е. кулоновских) называют сторонними силами. (Сторонние силы объясняются электромагнитным взаимодействием между электронами и ядрами)
ЭДС — энергетическая характеристика источника. Это физическая величина, равная отношению работы, совершенной сторонни­ми силами при перемещении электрического заряда по замкнутой цепи, к этому заряду: Измеряется в вольтах (В).
Еще одна характеристика источника - внутреннее сопротивление источника тока: r.  
Закон Ома для полной цепи.
Энергетические преобразования в цепи: - закон сохранения энергии (А - работа сторонних сил; Авнеш.- работа тока на внешнем участке цепи сопротивлением R; Авнутр.- работа тока на внутреннем сопротивлении источникаr.)
Закон Ома: Сила тока в цепи постоянного тока прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению электрической цепи.
Следствия:  
1. Если R> > r, то ε =U. Измеряют e высокоомным вольтметром при разомкнутой внешней цепи.
2.Если R< < r, то ток - максимальный ток для данной цепи (ток короткого замыкания). Опасно, т.к. - возрастает e= U1+U2
3. На внутреннем участке цепи: Aвнутр=U1q, на внешнем участке цепи: Aвнеш=U2q. A=Aвнутр+ Aвнеш. Тогда: ε q=U1q+U2q. Следовательно: ε = U1+U2 ЭДС источника тока равна сумме падений напряжений на внешнем и внутреннем участках цепи.  
4. Если R растет, то I уменьшается. - при уменьшении силы тока в цепи напряжение увеличивается!  
5. Мощность: а) Полная.. б) Полезная. . в) Теряемая. . г) КПД .  
Соединение источников тока.
1. Последовательное соединение источников: полная ЭДС цепи равна алгебраической сумме ЭДС отдельных источников, полное внутреннее сопротивление равно сумме внутренних сопротивлений всех источников тока. Если все источники одинаковы и включены в одном направлении, то . Тогда з-н Ома запишется в виде:
2. Параллельное соединение источников: один из источников (с наибольшейЭДС) работает как источник, остальные - как потребители (на этом принципе основана зарядка аккумулятора). Расчет по правилам Кирхгофа (см.). Если все источники одинаковы, то закон Ома запишется в виде:.
Закон Ома для неоднородного участка цепи.
- знаки " +" или " -" выбираются в зависимости от того, в одну или в противоположные стороны направлены токи создаваемые источником ЭДС и электрическим полем.
Правила Кирхгофа.
1. Алгебраическая сумма сил токов в каждом узле (точке разветвления) равна 0. - следствие закона сохранения электрического заряда.
2. В любом замкнутом контуре цепи алгебраическая сумма произведений сил токов в отдельных участках на их сопротивления равна алгебраической сумме ЭДС источников в этих контурах. - следствие закона Ома для неоднородного участка цепи.
Направление токов выбирают произвольно. Если после вычислений значение силы тока отрицательно, то направление противоположно. Замкнутый контур обходят в одном направлении. Если направление обхода совпадает с направлением тока, то IR> 0. Если при обходе приходят к " +" источника, то его ЭДС отрицательна. В полученную систему уравнений должны входить все ЭДС и все сопротивления. Т.о. система должна состоять из одного уравнения для токов и k-1 - го уравнения для ЭДС (k - количество замкнутых контуров).  





© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.