Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Осциллографические методы измерения частоты






Измеряемая частота может быть определена сравнением её с известной опорной частотой fo. Такое сравнение чаще всего производится с помощью электроннолучевого осциллографа или методами биений.

Электроннолучевые осциллографы применяются для измерения частот колебаний главным образом синусоидальной формы в диапазоне частот примерно от 10 Гц до значения, определяемого верхней границей полосы пропускания каналов отклонения; погрешность измерений практически равна погрешности калибровки источника колебаний (генератора) опорной частоты f0. Чаще всего измерения проводят при выключенной развёртке осциллографа, пользуясь схемой соединений, показанной на рис. 5. Напряжения измеряемой и известной частот подводят непосредственно или через усилители к различным парам отклоняющих пластин ЭЛТ (в зависимости от того, на какой вход осциллографа эти напряжения воздействуют, будем обозначать их частоты через fx и fy). Если эти частоты относятся друг к другу как целые числа, например 1: 1, 1: 2, 2: 3 и т. п., то перемещение электронного луча приобретает периодический характер и на экране наблюдается неподвижное изображение, называемой фигурой Лиссажу. Форма этой фигуры зависит от соотношения амплитуд, частот и начальных фаз сравниваемых колебаний.

Рис. 5. Схема измерения частоты методом фигур Лиссажу

На рис. 6 показано образование фигуры Лиссажу при воздействии на отклоняющие пластины трубки двух синусоидальных колебаний одинаковой частоты и равных амплитуд, но имеющих различные начальные фазы. Эта фигура имеет вид наклонного эллипса, который при фазовых сдвигах между колебаниями в 0 и 180° сжимается в прямую наклонную линию, а при фазовых сдвигах 90° и 270° - превращается в окружность (условно считаем чувствительность по отклонению обеих пар пластин одинаковой). Если амплитуды напряжений частот fx и fy не равны, то в последнем случае вместо круга на экране будет наблюдаться эллипс с осями, параллельными плоскостям отклоняющих пластин.

Рис. 6. Построение осциллограммы при отношении сравниваемых частот fx/fy = 1

Если отношение частот fx/fy (или fy/fx) равно двум, то фигура на экране принимает вид восьмёрки, которая при начальных фазовых сдвигах 90 и 270° стягивается в дугу. (Начальный фазовый сдвиг всегда оценивается по отношению к периоду напряжения более высокой частоты). Из таблицы, приведённой на рис. 7, видно, что чем больше числа дроби, характеризующей отношение сравниваемых частот, тем сложнее фигура Лиссажу, наблюдаемая на экране.

При измерении частоту опорного генератора f0 (равную fx или fy) плавно изменяют до тех пор, пока на экране не возникнет одна из фигур Лиссажу возможно более простой формы. Эту фигуру мысленно пересекают линиями xx и уу, параллельными плоскостям отклоняющих пластин X1, Х2 и Y1, Y2, и подсчитывают число пересечений каждой из линий с фигурой. Отношение полученных чисел точно равно отношению частот fx: fy при условии, что проведённые линии не проходят через узловые точки фигуры или касательно к ней, а форма сравниваемых колебаний близка к синусоидальной.

Рис. 7. Фигуры, наблюдаемые на экране при различных отношениях частот fx/fy

Определив отношение fx: fy и зная одну из частот, например fy, легко найти вторую частоту.

Предположим, что при известной частоте fy = 1000 Гц на экране получена фигура, изображённая на рис. 5. Из приведённого на чертеже построения видно, что эта фигура соответствует отношению частот fx: fy = 3: 4, откуда fx = 750 Гц.

Вследствие некоторой нестабильности сравниваемых частот устанавливаемое между ними целочисленное или дробно-рациональное отношение постоянно нарушается, что приводит к постепенному изменению формы наблюдаемой фигуры, последовательно проходящей через все возможные фазовые состояния. Если зафиксировать время Δ t, в течение которого фигура претерпевает полный цикл фазовых изменений (от 0 до 360°), то можно вычислить разность сравниваемых частот |fx - fy| = 1/Δ t, знак которой легко определить экспериментально посредством небольшого изменения частоты f0. На высоких частотах даже весьма малая нестабильность одной из частот вызывает столь быстрые изменения фигуры Лиссажу, что становится невозможным определить отношение частот. Это ограничивает верхний предел измеряемых частот значением примерно 10 МГц.

Рис. 8. Схема измерения частоты методом круговой развёртки с модуляцией яркости

При целочисленном отношении сравниваемых частот, превышающем 8-10, или дробном их отношении с числами в знаменателе или числителе, большими 4-5, из-за усложнения фигуры Лиссажу возрастает возможность ошибки в установлении истинного отношения частот. Точное определение сравнительно больших целочисленных отношений частот (до 30-50) может производиться методом круговой развёртки с модуляцией яркости изображения (рис. 8). В этом случае напряжение меньшей частоты f1 с помощью двух одинаковых фазорасщепляющих RС-цепочек преобразуется в два напряжения той же частоты, взаимно сдвинутые по фазе на 90°. При воздействии этих напряжений соответственно на входы Y и X осциллографа и регулировке соотношения их амплитуд резисторами R и регуляторами усиления каналов Y и X световое пятно на экране будет перемещаться по кривой, близкой к окружности; последнюю с помощью регулятора яркости устанавливают чётко видимой. Напряжение более высокой частоты f2 подводят к входу модулятора М (или канала Z) и оно периодически будет увеличивать и уменьшать интенсивность электронного луча, а следовательно, и яркость отдельных участков кривой развёртки на экране. При целочисленном отношении частот f2: f1 = m, достигаемом изменением одной из них, кривая наблюдаемой окружности становится штриховой, она состоит из f неподвижных светящихся отрезков равной длины, разделённых тёмными промежутками. При нарушении целочисленного отношения наблюдается вращение штриховой окружности, при большой скорости которого окружность представляется сплошной.

Рассмотренный метод можно применить и для измерения частоты повторения fп импульсных колебаний. При этом напряжением опорной частоты f0 осуществляют круговую развертку, регулятором яркости её устанавливают видимой или невидимой в зависимости от полярности (соответственно отрицательной или положительной) подводимых к модулятору импульсных колебаний. Последние будут создавать на линии развёртки в первом случае тёмные разрывы, а во втором - светящиеся точки. Плавным изменением частоты fо (от её минимально возможного значения) добиваются получения на линии развёртки одного неподвижного или медленно перемещающегося следа импульса, при этом fп = f0.

Измерение частоты fп импульсных колебаний можно производить и по схеме на рис. 5 при подаче синусоидального напряжения опорной частоты f0 на вход X, а импульсного напряжения - на вход Y осциллографа. Частоту развёртки f0 = fx постепенно повышают, начиная с её наименьшего значения, пока на экране не возникнет достаточно устойчивое изображение одного импульса, что имеет место при fп = f0. Такая методика измерений исключает возможность ошибки, поскольку одиночный импульс будет наблюдаться на экране и при других, больших единицы, целочисленных отношениях частот f0: fп.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.