Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Тема 1. Неопределённый интеграл.






Функция называется первообразной для функции на промежутке , если для всех . Функция может иметь различные первообразные, но все они отличаются друг от друга только постоянными слагаемыми. Поэтому все первообразные для содержатся в выражении , где - произвольная постоянная, которое и называется неопределённым интегралом от функции и обозначается . Таким образом, по определению .

Операция нахождения первообразной или неопределённого интеграла от функции называется интегрированием этой функции. Функция для которой на промежутке существует первообразная или неопределённый интеграл называется интегрируемой на этом промежутке. Первообразная и неопределённый интеграл на промежутке существуют у любой непрерывной на этом промежутке функции. Нахождение неопределённого интеграла состоит в таком преобразовании подынтегрального выражения, чтобы получить интегралы из таблицы основных интегралов (приложение 6.3).

Основные свойства неопределённого интеграла:

1.. 2..

3. ().

4..

5. Если , то , .

Основными методами интегрирования являются: непосредственное интегрирование, интегрирование заменой переменной и по частям.

Непосредственным интегрированием (интегрированием методом разложения) функции называют отыскание неопределённого интеграла с помощью тождественных преобразований подынтегральной функции , свойств 3-4 неопределённого интеграла и таблицы основных интегралов.

Часто, заменой переменной интегрирования , удаётся свести нахождение интеграла к нахождению более простого интеграла с последующей заменой .

Существуют два варианта замены переменной интегрирования:

1) Метод подведения функции под знак дифференциала.

Если подынтегральное выражение может быть записано в виде

, где - дифференцируемая функция, то осуществляется замена . Тогда

.

При подведении функций под знак дифференциала широко используются свойства дифференциалов и таблица дифференциалов основных элементарных функций (приложение 6.3), в частности, преобразования:

; ;

, .






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.