Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Управление химическими процессами




 

Успехи в развитии современной химии во многом определяются степенью управления химическими превращениями, которые непосредственно зависят от химической реакционной активности реагентов. Повышению степени управления химическими процессами способствует внедрение новых экспериментальных методов химических превращений с применением современных технических средств контроля и анализа сложных молекулярных структур.

В упрощенном понимании химию можно представить как науку о превращениях одного набора химических веществ в другой. Такое превращение (химическая реакция) на молекулярном уровне означает перегруппировку одного набора молекул в другой. Химическая реакция начинается со смешивания реагентов и заканчивается образованием конечных продуктов. В большинстве случаев она включает ряд промежуточных стадий, и для полного понимания механизма реакции нужны сведения о промежуточных молекулах, образующихся на каждой стадии, протекающей, как правило, очень быстро. Если 20–30 лет назад технические средства эксперимента позволяли проследить за промежуточными молекулами с временем жизни около одной миллионной доли секунды, то современные лазерные источники излучения существенно расширили временной диапазон исследований от 10-6 до 10-15 с. Сейчас физики умеют получать лазерные импульсы длительностью менее 5 фемтосекунд (1 фс = 10-15) и уже приближаются к аттосекундам (1 ас = 10-18 с). За основополагающие работы в области фемтохимии американец египетского происхождения Ахмед Зивейл удостоен Нобелевской премии по химии 1999 г. Свои первые экспериментальные исследования сверхбыстрых реакций, инициируемых лазерным импульсом феттосекундной длительности, он начал в конце 80-х годов с изучения распада молекул цианида йода.

Электромагнитное излучение играет важную роль не только в детальном исследовании промежуточных процессов химических превращений, но и в их инициировании. Например, видимое или ультрафиолетовое излучение, поглощаемое некоторыми молекулами, сообщает им энергию, достаточную для изменения распределения электронной плотности, ослабления химических связей и возникновения новой молекулярной структуры, которую трудно получить в реакциях даже при термическом или другом воздействии.

Приобретенная при поглощении молекулой энергия может высвободиться в виде излучения света, цвет которого часто отличается от цвета поглощенного света. Если излучение происходит быстро – в течение 10-9–10-12 с, то оно называется флуоресценцией. Голубой свет, испускаемый бунзеновской газовой горелкой, и северное сияние – это примеры флуоресценции. При медленном процессе излучения света, длящимся от нескольких миллисекунд до нескольких секунд или минут, происходит фосфоресценция (голубое свечение вечером приливов и отливов, свечение циферблатов некоторых марок часов и т.п.).



Применение современной лазерной техники позволяет изучать возбужденное состояние молекул. На определенной длине волны света генерируются строго определенные возбужденные состояния, и при относительно небольшой длительности импульсов можно определить длительность очень быстрых химических процессов, происходящих при флуоресценции. Проанализировав спектр излучаемого света, можно определить скорость таких процессов и распределение энергии в молекулах. Таким образом можно воспроизвести картину электронных состояний молекул.

Лазерное излучение для изучения электронных состояний молекул применялось, например, при облучении бензофенона. Раствор бензофенона при воздействии ультрафиолетового излучения с длиной волны 316 нм испускает свет с двумя длинами волн – 410 и 450 нм, т.е. происходит вторичное излучение с разными длинами волн. Если длительность импульса лазерного излучения равна 10 пс, то на меньшей длине волны – 410 нм вторичное излучение носит характер флуоресценции, а на большей длине волны, соответствующей 450 нм, наблюдается фосфоресценция. Данные наблюдения дают представление о возбужденных состояниях бензофенона и скорости перехода между ними, что весьма важно для понимания сущности природного фотосинтеза – основополагающего процесса растительного мира, воспроизведение которого – давняя мечта ученых-естествоиспытателей.

При смешивании двух газообразных соединений образование продуктов реакции определяется статистической вероятностью, зависящей от энергетического состояния исходных соединений, типов возбуждения и взаимной ориентации молекул при столкновении. Сталкиваются молекулы не только реагирующих соединений, но и каждого из них. Современная вакуумная техника открывает новые возможности для взаимодействия реагирующих соединений при столкновении молекул. В глубоком вакууме, когда длина свободного пробега молекул велика, столкновение молекул может происходить в сравнительно небольшом объеме, составляющем зону пересечения двух молекулярных пучков реагирующих соединений. Молекулярные пучки образуются при пропускании газообразного вещества через узкое сопло, формирующее поток молекул в вакуумной камере со сверхвысоким вакуумом. При пересечении молекулярных пучков возрастает вероятность участия каждой молекулы не более чем в одном столкновении, приводящем к реакции. Это означает, что появляется реальная возможность для изучения тонких деталей химического превращения при единичных столкновениях молекул, что представляется весьма важным средством управления химическими процессами.



Определение характеристик атомных и молекулярных частиц (их структуры и состава) в аналитической химии называют качественным анализом, а измерение их относительного содержания – количественным анализом. Новые методы качественного и количественного анализа основываются на важнейших достижениях различных отраслей естествознания и, в первую очередь, физики. Методы аналитической химии широко применяются во многих отраслях химии, в медицине, сельском хозяйстве, в геологии, экологии и т. п.

Многие методы количественного анализа можно реализовать только после разделения исследуемой сложной смеси на составляющие ее компоненты. Один из универсальных методов разделения – хроматография. Сущность данного метода заключается в том, что различные вещества в жидкой или газообразной фазе обладают разной прочностью связи с поверхностью, с которой они находятся в контакте. С помощью жидкостной хроматографии можно разделить и зафиксировать чрезвычайно малое количество вещества в смеси, составляющее lO-12 г. Хромотографический метод позволяет разделить газообразные смеси, содержащие тысячи компонентов, а также разделить вещества, отличающиеся только изотопным составом.

Для анализа и идентификации структуры сложных молекул, объединяющих большое количество атомов с различными взаимными связями, широко применяются основанные на физических принципах экспериментальные методы ядерного магнитного резонанса, оптической спектроскопии, масс-спектроскопии, рентгеноструктурного анализа, нейтронографии и т. п.


mylektsii.ru - Мои Лекции - 2015-2018 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал