Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Основные технологические процессы и оборудование






Виниловый сайдинг производится методом экструзии. Суть этого метода состоит в том, что расплавленный компаунд, состоящий из винилового порошка (пудры) и необходимых присадок, продавливается через профилирующее отверстие, после чего, остывая, сохраняет приданную ему форму.

Технологический процесс экструзии складывается из последовательного перемещения материала вращающимся шнеком в его зонах (см. рис. 1):

питания (I),

пластикации (II),

дозирования расплава (III), а затем продвижения расплава в каналах формующей головки.

Деление шнека на зоны I-III осуществляется по технологическому признаку и указывает на то, какую операцию в основном выполняет данный участок шнека. Разделение шнека на зоны условно, поскольку в зависимости от природы перерабатываемого полимера, температурно-скоростного режима процесса и других факторов начало и окончание определенных операций могут смещаться вдоль шнека, захватывая различные зоны или переходя из одного участка в другой.

Цилиндр также имеет определенные длины зон обогрева. Длина этих зон определяется расположением нагревателей на его поверхности и их температурой. Границы зон шнека I-III и зон обогрева цилиндра могут не совпадать.

Рассмотрим поведение материала последовательно на каждом этапе экструзии.

Загрузка сырья. Исходное сырье для экструзии, подаваемое в бункер, может быть в виде порошка, гранул, лент. Равномерное дозирование материала из бункера обеспечивает хорошее качество экструдата.

Переработка полимера в виде гранул - наилучший вариант питания экструдера. Это объясняется тем, что гранулы полимера меньше склонны к образованию «сводов» в бункере, чем порошок, следовательно, исключаются пульсации потока на выходе их экструдера.

Сыпучесть материала зависит в большой степени от влажности: чем больше влажность, тем меньше сыпучесть. Поэтому материалы должны быть вначале подсушены. Для увеличения производительности машины гранулы можно предварительно подогреть.

Применяя приспособления для принудительной подачи материала из бункера на шнек, также удается существенно повысить производительность машины (в 3-4 раза). При уплотнении материала в межвитковом пространстве шнека вытесненный воздух выходит обратно через бункер. Если удаление воздуха будет неполным, то он останется в расплаве и после формования образует в изделии полости, что является браком изделий.

Изменение уровня заполнения бункера материалом по высоте также влияет на полноту заполнения шнека. Поэтому бункер снабжен специальными автоматическими уровнемерами, по команде которых происходит загрузка бункера материалом до нужного уровня. Загрузка бункера экструдера осуществляется при помощи пневмотранспорта.

При длительной работе экструдера возможен перегрев цилиндра под воронкой бункера и самого бункера. В этом случае гранулы начнут слипаться и прекратится их подача на шнек. Для предотвращения перегрева этой части цилиндра в нем делаются полости для циркуляции охлаждающей воды (см. рис. 1, поз. 4).

Зона питания (I). Поступающие из бункера гранулы заполняют межвитковое пространство шнека зоны I и уплотняются. Уплотнение и сжатие гранул в зоне I происходит, как правило, за счет уменьшения глубины нарезки h шнека. Продвижение гранул осуществляется вследствие разности значений силы трения полимера о внутреннюю поверхность корпуса цилиндра и о поверхность шнека. Поскольку поверхность контакта полимера с поверхностью шнека больше, чем с поверхностью цилиндра, необходимо уменьшить коэффициент трения полимера о шнек, так как в противном случае материал перестанет двигаться вдоль оси шнека, а начнет вращаться вместе с ним. Это достигается повышением температуры стенки цилиндра (нагревом) и понижением температуры шнека (шнек охлаждается изнутри водой). Нагрев полимера в зоне I происходит за счет диссипативного тепла, выделяющегося при трении материала и за счет дополнительного тепла от нагревателей, расположенных по периметру цилиндра.

Иногда количество диссипативного тепла может быть достаточным для плавления полимера, и тогда нагреватели отключают. На практике такое происходит редко.

При оптимальной температуре процесса полимер спрессован, уплотнен и образует в межвитковом пространстве твердую пробку (см. рис. 2). Лучше всего, если такая скользящая пробка образуется и сохраняется на границе зон I и II. Свойства пробки во многом определяют производительность машины, стабильность транспортировки полимера, величину максимального давления и т. д.

Зона пластикации и плавления (II). В начале зоны II происходит подплавление полимера, примыкающего к поверхности цилиндра. Расплав постепенно накапливается и воздействует на убывающую по ширине пробку. Поскольку глубина нарезки шнека уменьшается по мере продвижения материала от зоны I к зоне III, то возникающее давление заставляет пробку плотно прижиматься к горячей стенке цилиндра, происходит плавление полимера.

В зоне пластикации пробка плавится также и под действием тепла, выделяющегося вследствие внутреннего, вязкого трения в материале в тонком слое расплава (поз. 3 на рис. 2), где происходят интенсивные сдвиговые деформации. Последнее обстоятельство приводит к выраженному смесительному эффекту. Расплав интенсивно гомогенизируется, а составляющие композиционного материала перемешиваются.

Конец зоны II характеризуется распадом пробки на отдельные фрагменты. Далее расплав полимера с остатками твердых частиц попадает в зону дозирования.

Основной подъем давления P расплава происходит на границе зон I и II. На этой границе образующаяся пробка из спрессованного материала как бы скользит по шнеку: в зоне I это твердый материал, в зоне II- плавящийся. Наличие этой пробки и создает основной вклад в повышение давления расплава. Также увеличение давления происходит за счет уменьшения глубины нарезки шнека. Запасенное на выходе из цилиндра давление расходуется на преодоление сопротивления сеток, течения расплава в каналах головки и формования изделия.

Зона дозирования (III). Продвижение гетерогенного материала (расплав, частички твердого полимера) продолжает сопровождаться выделением внутреннего тепла, которое является результатом интенсивных сдвиговых деформаций в полимере. Расплавленная масса продолжает гомогенизироваться, что проявляется в окончательном плавлении остатков твердого полимера, усреднении вязкости и температуры расплавленной части.

Сразу же после выхода панели из экструдера её поверхность дополнительно обрабатывается - её придается определенная фактура, имитирующая тот или иной сорт дерева. Затем обрезаются кромки панели и в её верхней части прошиваются необходимые для крепления к обшиваемой панелями стене отверстия.

Моноэкструзия. При моноэкструзии панель формируется из массы однородного состава. Эта технология проще и дешевле. Данный технологический процесс производства сайдинга осуществляется при помощи экструдеров, принцип действия которых состоит в следующем - в подогреваемом цилиндре вращается один или несколько шнеков и непрерывно подает в фильеру смесь (расплавленный компаунд, состоящий из винилового порошка (пудры) и необходимых присадок), которая становится все более пластичной за счет увеличения подогрева. Затем профили охлаждаются в вакуумных калибраторах, где им придается окончательная форма и качество поверхности.

Утверждается, что моноэкструзионный метод постепенно уходит в прошлое (из-за неэффективного использования дорогостоящих компонентов), а продукты вторичной переработки постепенно перестают пользоваться спросом из-за снижения себестоимости качественных материалов.

Но есть и прямо противоположное мнение. Оно утверждает, что только моноэксторузионный метод позволяет получить качественный сайдинг, а коэкструзия и придумана только для того, чтобы в составе компаунда для внутреннего слоя можно было использовать вторичное сырье.

Коэкструзия. Коэкструзия является результатом одновременной экструзии двух слоев – нижнего - 80% от толщины профиля и верхнего - 20% от толщины профиля.

Верхнее акриловое покрытие на лицевой стороне сайдинга может быть выполнено в различных цветовых тонах (с внутренней стороны профили имеют белый цвет). Оно устойчиво к царапанью, так как специфические свойства акрила придают поверхности профиля необычайную твердость, и образует единое целое с основой.

Если на такой поверхности все же возникнут царапины, то их можно легко устранить шлифованием. Такой поверхности не грозят локальный нагрев, в том числе под интенсивным солнечным излучением, отслоение или растрескивание.

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.