Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Пылеугольные горелки.






Горелочное устройство должно обеспечивать хорошее перемешивание пыли и воздуха, возможно более раннее воспламенение пылевоздушиой смеси и способствовать практически полному выгоранию пыли. Для камерного (факельного) сжигания твердого топлива наибольшее распространение получили вихревые круглые, а также прямоточные щелевые и сопловые горелки. Вихревыми называют горелки, у которых первичный и вторичный воздух или только вторичный воздух закручивается специальными завихрителями. Закручивание потоков достигается при помощи улиток, устанавливаемых па входе в горелку, или лопаток, устанавливаемых в горелке аксиально или тангенциально в потоке первичного или вторичного воздуха. Принципиальные схемы вихревых горелок показаны на рис. 8.3. Наименование горелки отражает способ ввода первичного (с пылью) и вторичного воздуха. Так, в показанной на рис. 8.3, а прямоточно-улиточиой горелке первичный воздух с пылью (пылевоздушная смесь или аэросмесь) подается через центральную трубу прямо- точно, без закручивания. Вторичный воздух, подаваемый в топку через горелку, закручивается улиткой. Конструкция такой горелки (одноулиточная горелка) показана на рис. 8.4.

Аэросмесь поступает в топку через центральную трубу, имеющую на конце чугунный наконечник. Регулирование выходного сечения для аэросмеси осуществляется конусом-рассекателем, который может перемещаться. Конус-рассекатель обеспечивает хорошее раскрытие пылевоздушной струи, а также подсос горячих топочных газов к корню факела, что интенсифицирует воспламенение топлива. Вторичный воздух, подаваемый через улитку, выходит в топку завихренным через кольцевое пространство, образуемое наконечником и обмуровкой. Для растопки, а также при необходимости подсвечивать пылеугольиый факел пре­дусматривают установку мазутной форсунки, для чего в корпусе горелки имеется отверстие 6. В вихревых горелках, показанных на рис. 8.3, б—д, мазутные форсунки установлены по центру горелки.

В прямоточных щелевых горелках (рис. 8.5, а) подача в топку аэросмеси и вторичного воздуха осуществляется раздельно через узкие щели. Такие горелки выполняются с внешним 1 и с внутренним 2 вводом вторичного воздуха. В прямоточных сопловых горелках (рис. 8.5, б) ввод аэросмеси и вторичного воздуха осуществляется раздельно через круглые сопла.

Примером прямоточной щелевой горелки является широко используемая поворотная горелка. В этой горелке (рис. 8.6) аэросмесь поступает через центральный патрубок, откуда через поворотные сопла-щели она выходит в топку. Вторичный воздух поступает в топку по наружному соплу. Сопла при помощи электродвигателя можно поворачивать вверх и вниз от горизонтальной плоскости на 12—20°. Это дает возможность менять положение факела в топке.

Для вихревых и прямоточных горелок характерны различные схемы воспламенения, дальнобойность факела и сопротивление горелочного устройства.

Схема зажигания пылевоздушиой смеси для вихревых турбулентных горелок показана на рис. 8.7, а.

фВ этих горелках улиточный подвод воздуха и наличие конуса-рассекателя обеспечивают выходящей пылевоздушной струе дополнительную составляющую скорости, перпендикулярную оси горелки. При этом выходящая из горелки струя имеет форму полого гиперболоида вращения. Образующаяся в центральной его части зона разрежения приводит к не­прерывному подсосу сюда высокотемпературных топочных газов, обеспечивающих интенсивное зажигание пылевоздушиой смеси. Воспламенение струи по внешней поверхности конуса тормозится прослойкой относительно холодного вторичного воздуха, находящегося между пылевоздушной смесью и горячими топочными газами. Кроме того, здесь сказывается и охлаждающее влияние экранных по­верхностей нагрева. В отличие от вихревых турбулентных горелок в прямоточных горелках разнос пылевоздушной струи отсутствует (рис. 8.7, 6). Факел получается более дальнобойным. Для горелки с внешним вторичным воздухом зажигание струи происходит по внешней ее поверхности. На­личие здесь вторичного воздуха, охватывающего пылевоздушную струю, несколько затрудняет прогрев и воспламенение смеси. Более целесообразна схема прямоточной горелки с внутренним подводом вторичного воздуха (рис. 8.7, в), при этом улучшаются условия воспламенения пылевоздушной смеси.

Условия воспламенения пылегазовой смеси, интенсивность горения и длина факела в значительной степени зависят от соотношения первичного и вторичного воздуха и их скоростей на выходе из горелки. Для ускорения воспламенения топлива количество первичного воздуха, как указывалось, целесообразно уменьшать. Снижение доли первичного воздуха особенно целесообразно при сжигании малореакционных трудновоспламеняемых углей (антрацит, полуантрацит, тощий уголь).

Если предусматривается возможность сжигания в топочной камере и твердого пылевидного, и газового топлив, применяют комбинированные пылегазовые горелки, что значительно упрощает топливно-воздушные коммуникации. На рис. 8.8 для примера показана комбинированная пылегазовая горелка, представляющая собой вихревую горелку со встроенной многоструйной газовой горелкой.

В центральной части горелки может быть установлена также и мазутная форсунка.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.