Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Поддержание нормальных значений частоты и напряжений в системе






Для поддержания нормальной частоты в системе в первую очередь должен быть обеспечен соответствующий этой частоте баланс активных мощностей, а следовательно, при росте активных нагрузок прежде всего должна соответственно увеличиваться активная мощность генераторов.

Возникающее при дефиците реактивных мощностей снижение напряжений также влияет на величину активных нагрузок в системе, но при обычном преобладании в составе нагрузки электродвигателей это обстоятельство является второстепенным и поддержание частоты при помощи регулирования напряжений, даже если бы оно было допустимо с точки зрения пределов изменений величины напряжений, возможно лишь в очень узком диапазоне.

Аналогично этому рост реактивной нагрузки потребителей или снижение реактивной мощности генераторов в первую очередь вызывает снижение напряжений во всех узловых точках системы. Однако здесь имеется существенное отличие от предыдущего: если частота изменяется во всей системе одинаково, то изменение напряжений существенно зависит от электрической удаленности данного места от источника изменения баланса по реактивной мощности. Снижение напряжений, вызванное изменением баланса по реактивной мощности, приведет к уменьшению реактивной нагрузки в близлежащих узловых точках системы и, кроме того, в большинстве случаев к росту реактивных мощностей генераторов. Особенно интенсивно растет генерация реактивной мощности в случае снижения напряжения в сети благодаря наличию у машин автоматических регуляторов возбуждения.

Таким образом, для поддержания нормальных напряжений в системе в первую очередь должен быть обеспечен соответствующий баланс реактивных мощностей. Возникающее при дефиците активных мощностей снижение частоты влияет на величину реактивных мощностей в системе, что в данном случае оказывается существенным, и обеспечить поддержание нормальных напряжений в системах при дефиците активной мощности и сниженной частоте не всегда удается.

Поскольку напряжения в различных точках системы различны, необходимо не только обеспечить баланс реактивных мощностей в системе, но и распределить вней источники реактивной мощности так, чтобы напряжения во всех ее узловых точках не выходили из зоны допустимых значений. Произвольное распределение реактивных мощностей может привести к большим значениям потоков реактивной мощности на отдельных участках сети и, как следствие, к большим потерям напряжения и невозможности поддержания допустимых напряжений в отдельных пунктах системы. Следовательно, нужно стремиться устанавливать местные балансы реактивной мощности в отдельных районах сети, по возможности не допуская передачи значительной реактивной мощности, особенно через длинные линии.

Этим регулирование напряжения отличается от регулирования частоты. Произвольное распределение активных нагрузок не мешает регулированию частоты, если не учитывать изменения потерь активной мощности и если при этом не превышается пропускная способность электропередач. Однако распределение активных нагрузок в известной мере влияет на величину напряжений в отдельных узловых точках, особенно в сети с большими значениями отношений r/x.

Условия обеспечения надлежащих значений частоты и напряжений в сетях электроэнергетической системы сводятся к следующему:

1. Располагаемая активная мощность станций должна быть достаточной для того, чтобы покрыть всю активную нагрузку системы и потери активной мощности в сетях при нормальных напряжениях и частоте.

2. Располагаемая реактивная мощность генераторов и синхронных компенсаторов должна быть достаточной для того, чтобы покрыть всю реактивную нагрузку системы и потери реактивной мощности в сетях при нормальных напряжениях и частоте.

3. Распределение располагаемой реактивной мощности генераторов и синхронных компенсаторов в системе должно быть таким, чтобы в каждом районе, отделенном от других районов относительно длинными линиями, реактивная нагрузка всех потребителей вместе с потерями реактивной мощности в сетях в основном могла быть покрыта местными генераторами и компенсаторами и уравнительные потоки реактивной мощности между районами были небольшими и не приводили к значительной потере напряжений всетях.

Невыполнение первого условия, т.е. появление дефицита (недостатка) активной мощности, приводит к невозможности поддержания нормальной частоты; невыполнение второго — к невозможности поддержания среднего уровня напряжений в сетях близ нормального значения. Наконец, невыполнение третьего условия, т.е. появление местных недостатков реактивной мощности в отдельных районах приводит к невозможности поддержания надлежащего уровня напряжений в этих районах.

Недостаток активной мощности в системе снижает не только частоту, но (при отсутствии надлежащего резерва реактивной мощности) также и напряжения, что частично уменьшает дефицит активной мощности.

Недостаток реактивной мощности не только приводит к снижению напряжений, но и увеличивает резерв активной мощности в системе за счет снижения активной мощности потребителей, что частично уменьшает недостаток реактивной мощности.

Располагая резервом активной мощности, можно несколько смягчить недостаток реактивной мощности и в очень узких пределах повысить слишком низкое напряжение, повышая для этой цели частоту в сети, что приводит к росту реактивной мощности генераторов и снижению реактивной мощности потребителей.

Имея повышенный уровень напряжений в системе, можно несколько снизить дефицит активной мощности в системе и в очень узких пределах повысить сниженную частоту, уменьшая уровень напряжений в сетях, что приводит к снижению активных нагрузок.

В заключение остановимся на характеристиках зависимости активной и реактивной мощностей потребителей от частоты и напряжения.

На рис. 5 и 6 представлены характеристики зависимости активной Р и реактивной Q мощностей потребителей от частоты f и напряжения U, построенные Теплоэлектропроектом.

Как видно из рис. 5, зависимость Р от f почти прямолинейна. Наклон этой характеристики зависит от состава нагрузок потребителей и главным образом от доли участия нагрузок в виде синхронных и асинхронных электродвигателей с постоянным моментом на валу и асинхронных электродвигателей с переменным (падающим) моментом на валу (приводы насосов и вентиляторов). Для первой группы потребителей активная мощность нагрузки почти пропорциональна первой степени частоты, т. е. при снижении частоты на 1% активная мощность снижается на 1 %. Для второй группы потребителей снижению частоты на 1 % соответствует снижение активной мощности примерно на 3%. Для других потребителей – освещения, бытовых приборов, дуговых печей – изменение частоты почти не приводит к изменению активной мощности, если при этом поддерживается неизменное напряжение.

Суммарные потери активной мощности в электрических сетях мало изменяются при изменениях частоты.

Для энергосистем в целом на 1 % снижения частоты суммарная активная нагрузка изменяется на величину 1, 0 – 2, 0% в зависимости от состава потребителей.

Рис. 5. Характеристика зависимости активной и реактивной мощности от частоты

 

Из того же рис. 5 видно, что снижение частоты приводит к росту реактивной мощности потребителей. Этот рост обусловлен главным образом увеличением магнитной индукции в асинхронных двигателях и трансформаторах при снижении частоты и соответствующим значительным (вследствие насыщения) ростом токов их намагничивания. Указанное увеличение их реактивной мощности частично компенсируется снижением потерь реактивной мощности в реактивностях рассеяния линий, трансформаторов и асинхронных электродвигателей, а также ростом зарядной мощности линий электрических сетей. Для энергосистемы в целом на 1% снижения частоты (при неизменных напряжениях) реактивная мощность возрастает примерно на 1 – 1, 5%.

Из рис. 6 видно, что зависимость активной мощности потребителей от напряжения почти прямолинейна.

От величины напряжения сильно зависит активная мощность, потребляемая бытовыми приборами, дуговыми печами, а также теряемая в электрических сетях. На 1 % снижения напряжения потребляемая этими нагрузками.активная мощность снижается на 1, 6 – 2%. Мощность нагрузки асинхронных двигателей очень мало зависит от изменения напряжения (только за счет небольшого изменения скольжения). Мощность нагрузки синхронных двигателей совсем не зависит от напряжения. Потери в стали трансформатора снижаются при уменьшении напряжения. Для энергосистемы в целом на 1 % снижения напряжения активная мощность снижается на величину от 0, 6 % (при малой доле бытовой нагрузки) до 2 % (при большой доле бытовой нагрузки).

Рис. 6. Характеристика зависимости активной и реактивной мощности от напряжения

 

Зависимость реактивной нагрузки потребителей от напряжения имеет криволинейный характер по следующим причинам. Реактивная мощность намагничивания асинхронных двигателей и трансформаторов, составляющая значительную долю (60 – 70 %) всей реактивной нагрузки системы, резко уменьшается при снижении напряжения, что обусловливает крутой спад реактивной нагрузки при напряжениях, близких к нормальному значению (до 2 – 3 % на 1 % снижения напряжения). С другой стороны, снижение напряжения приводит к заметному росту реактивной мощности, теряемой в реактивных сопротивлениях рассеяния линий, трансформаторов и асинхронных двигателей (почти на 2 % при снижении напряжения на 1 %). Хотя при нормальном напряжении эта реактивная мощность составляет лишь 30 – 40% всей нагрузки, но по мере снижения напряжения ее доля участия в суммарной реактивной нагрузке все время возрастает. Кроме того, зарядная мощность линий, частично покрывающая потребность энергосистемы в реактивной мощности, при снижениях напряжения падает по квадратичной зависимости, что также приводит к увеличению реактивной нагрузки энергосистемы. Поэтому при достаточно большом снижении напряжения реактивная нагрузка системы доходит до минимального значения и при дальнейшем снижении напряжения начинает возрастать. Этот минимум (Q мин) в промышленных энергетических системах имеет место при снижении напряжения до 75 – 85% нормального. Определяющим для характеристики зависимости реактивной нагрузки от напряжения является состав потребителей и в особенности коэффициент загрузки асинхронных двигателей. Чем больше коэффициент загрузки асинхронных двигателей, тем больше доля реактивной нагрузки от полей рассеяния и тем меньше доля реактивной нагрузки от токов намагничивания и, следовательно, тем меньше спад реактивной нагрузки при напряжениях, близких к нормальным, и тем выше напряжение, соответствующее минимуму реактивной нагрузки. Кривые на рис. 6 построены при средней загрузке асинхронных двигателей порядка 75% и при следующем составе потребителей: освещение и быт – 22 %, асинхронная нагрузка – 50%, синхронная нагрузка – 9%, дуговые печи и ртутные выпрямители – 11 % и потери мощности в электрических сетях –8 %

Характерные зависимости QHАГ= f (U).Для нагрузок потребителей различных отраслей промышленности приведены в литературе.

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.