Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Автопоэз — паттерн жизни






Уже в первой четверти столетия было известно, что паттерн организации живой системы всегда является сетевым паттерном6. Однако мы знаем также, что не всякая сеть представляет живую систему. Согласно Матуране и Вареле, определяющей особенностью живой сети служит то, что она непрерывно производит саму себя. Таким образом, «бытие и творение [живых систем] неразделимы, и в этом заключается специфика их организации»7. Автопоэз, или «самосоздание», — это сетевой паттерн, в котором каждый компонент сети участвует в создании или трансформации других компонентов. Таким образом, сеть непрерывно производит, создает саму себя. Она создается своими компонентами и, в свою очередь, создает эти компоненты.

Простейшей из известных нам живых систем является клетка, и Матурана и Варела широко использовали биологию клетки при изучении характеристик автопоэзных сетей. Базовый паттерн автопоэза удобно проиллюстрировать на примере клетки растения. На рис. 7-1 изображена упрощенная картина такой клетки: здесь компонентам даны наглядные условные названия. Соответствующие специальные термины, произведенные из греческого и латинского, читатель найдет в словаре, приведенном ниже.

Рис. 7-1. Основные компоненты клетки растения

Типичная растительная клетка, как и любая другая, состоит из клеточной мембраны, в которой помещается клеточная жидкость. Жидкость представляет собой густой молекулярный раствор питательных веществ клетки, т. е. химических элементов, из которых клетка строит свои структуры. В клеточной жидкости мы обнаруживаем во взвешенном состоянии ядро клетки, а также большое количество центров производства, где изготавливаются основные структурные строительные блоки, и несколько специализированных частей, называемых «органеллами» — поскольку они аналогичны органам тела. Наиболее важными из этих органелл являются хранилище, центры переработки, силовые и солнечные станции. Как и клетка в целом, ядро и органеллы окружены полупроницаемыми мембранами, которые выборочно пропускают определенные вещества внутрь и наружу. Мембрана клетки, в частности, впускает питательные вещества и рассеивает отходы.

Ядро клетки содержит генетический материал — молекулы ДНК, несущие генетическую информацию, и молекулы РНК, которые производятся ДНК и доставляют инструкции в центры производства8. В ядре содержится меньшее «мини-ядро», где создаются производственные центры, которые затем распределяются по всей клетке.

 

Словарь технических терминов

клеточная жидкостьцитоплазма («клеточная жидкость») мини-ядро — ядрышко

центр производстварибосома; состоит из рибонуклеиновой кислоты (РНК) и микросомы («микроскопического тела») и представляет собой крошечную гранулу, содержащую ДНК

хранилищеаппарат Гольджи (назван по имени итальянского физика Камилло Гольджи)

центр переработкилизосома («растворяющее тело») силовая станция — митохондрия («нитевидная гранула»)

носитель энергииаденозинтрифосфат (АТФ), химическое соединение, состоящее из основы, Сахаров и фосфатов

солнечная станцияхлоропласт, фотосинтезирующее органическое вещество («зеленый лист»)

Центры производства представляют собой гранулярные тела, в которых производятся протеины клетки. Последние включают структурные протеины, а также ферменты — катализаторы, содействующие всем молекулярным процессам. В каждой клетке содержится около 500 000 центров производства.

Хранилища — это склады плоских мешочков, уложенных примерно как лепешки хлеба-лаваша; здесь хранятся, а затем маркируются, упаковываются и рассылаются по местам назначения различные клеточные продукты.

Центры переработки — это органеллы, в которых содержатся ферменты для переваривания пищи, поврежденные компоненты клетки и различные неиспользованные молекулы. Испорченные элементы здесь перерабатываются и используются для построения новых компонентов клетки.

Силовые станции выполняют дыхательные функции клетки, т. е. используют кислород для разложения органических молекул на углекислый газ и воду. Отсюда исходит энергия, которая концентрируется в специальных энергетических носителях. Эти энергетические носители представляют собой сложные молекулярные соединения, которые перемещаются к другим частям клетки и снабжают энергией все клеточные процессы, именуемые в совокупности клеточным метаболизмом. Энергетические носители служат основными энергетическими единицами клетки, примерно как деньги в человеческой экономике.

Только недавно было обнаружено, что силовые станции содержат собственный генетический материал и делятся независимо от деления клетки. Согласно теории Линн Маргулис, они происходят от простых бактерий, которые поселились в более сложных и крупных клетках примерно два миллиарда лет тому назад9. С тех пор они стали непременными резидентами во всех высших организмах, передаются от поколения к поколению и живут в тесном симбиозе с любой клеткой.

Как и силовые станции, солнечные станции имеют собственный генетический материал и самовоспроизводятся, но они содержатся лишь в зеленых растениях. Это центры фотосинтеза, преобразующие солнечную энергию, углекислый газ и воду в сахара и кислород. Произведенные сахара отправляются в силовые станции, где из них извлекается энергия, которая может затем храниться в энергетических носителях. В дополнение к сахарам, растения поглощают также питательные вещества и некоторые другие элементы из земли с помощью корней.

Очевидно, что даже для весьма грубого представления о внутриклеточной организации необходимо достаточно сложное описание компонентов клетки; сложность неизмеримо возрастает, когда мы пытаемся представить огромную сеть этих компонентов и их взаимосвязи, означающие тысячи метаболических процессов. Одни только ферменты образуют запутанную сеть каталитических реакций, поддерживающих все метаболические процессы; чтобы обеспечивать их горючим, соответствующую энергетическую сеть составляют энергетические носители. На рис. 7-2 еще раз изображена упрощенная схема клетки растения, но на этот раз стрелками показаны некоторые важнейшие связи в сети метаболических процессов.

Рис. 7-2. Метаболические процессы в клетке растения

Чтобы проиллюстрировать природу этой сети, рассмотрим только одну петлю. ДНК в ядре клетки производит молекулы РНК, которые содержат инструкции для производства протеинов, включая ферменты. Среди последних есть группа специальных ферментов, которые могут распознавать, устранять и заменять поврежденные участки ДНК10. На рис. 7-3 представлена схема некоторых взаимоотношений в такой петле. ДНК производит РНК, которая доставляет инструкции по производству ферментов в центры производства ферментов; произведенные ферменты проникают в ядро клетки и там восстанавливают ДНК. Каждый компонент этой небольшой сети участвует в производстве или преобразовании других компонентов; эта сеть, таким образом, явно обладает признаками автопоэза: ДНК производит РНК; РНК определяет ферменты; а ферменты восстанавливают ДНК.

 

Рис. 7-3. Компоненты автопоэзной сети, участвующие в восстановлении ДНК

Чтобы завершить картину, необходимо добавить строительные блоки, из которых построены ДНК, РНК и ферменты; энергетические носители, подающие топливо для всех изображенных процессов; генерацию энергии на силовых станциях на основе расщепленных Сахаров; производство Сахаров в процессе фотосинтеза на солнечных станциях; и т. д. и т. п. С каждым новым добавлением мы убеждаемся, что новые компоненты также помогают производить или трансформировать другие компоненты и что, таким образом, автопоэзная, самосозидающая природа всей сети становится все более очевидной.

Особенно интересна клеточная мембрана. Это граница клетки, образованная некоторыми компонентами клетки; она охватывает всю сеть метаболических процессов и тем самым ограничивает их распространение. Вместе с тем мембрана участвует в этой же сети: с помощью специальных фильтров она отбирает сырье для процессов производства (пищу клетки), а отходы производства выводит во внешнюю среду. Таким образом, автопоэзная сеть создает свою собственную границу, которая определяет клетку как отчетливую систему и в то же время сама остается активной частью сети.

Поскольку каждый компонент автопоэзной сети производится другими компонентами этой же сети, вся система организационно закрыта; вместе с тем она открыта по отношению к потоку энергии и материи. Организационная закрытость означает, что живая система является самоорганизующейся в том смысле, что ее порядок и поведение не обусловлены окружением, но устанавливаются самой системой. Другими словами, живые системы автономны. Это не означает, что они изолированы от окружающей их среды. Наоборот, они взаимодействуют с окружением через непрерывный обмен энергией и материей. Но это взаимодействие не определяет их организацию -— они остаются самоорганизующимися. Таким образом, автопоэз можно рассматривать как паттерн, лежащий в основе феномена самоорганизации, или автономии; это — важное характерное свойство всех живых систем.

Через взаимодействие с окружающей средой живые организмы непрерывно поддерживают и обновляют себя; они используют для этого ресурсы из окружающей среды. Более того, постоянное самосоздание включает также способность формировать новые структуры и новые паттерны поведения. Мы увидим, что создание новизны, приводящее к развитию и эволюции, является глубоким внутренним аспектом автопоэза.

Тонкий, но важный момент в определении автопоэза составляет тот факт, что автопоэзная сеть — это не набор отношений между статическими компонентами (каковым, например, является паттерн организации кристалла), но набор отношений между процессами воспроизводства компонентов. Если эти процессы останавливаются, останавливается и вся организация. Другими словами, автопоэзные сети должны непрерывно регенерировать себя, чтобы поддерживать собственную организацию. Это, конечно, хорошо известная особенность жизни.

Матурана и Варела видят в различии между взаимоотношениями статических компонентов и взаимоотношениями процессов ключевую разницу между физическими и биологическими феноменами. Поскольку процессы в биологическом феномене включают компоненты, из них всегда можно извлечь описание этих компонентов в чисто физических терминах. Тем не менее, как утверждают авторы, такое чисто физическое описание не охватывает биологический феномен в полной мере. Биологическое объяснение, утверждают они, должно быть описанием взаимоотношений процессов в контексте автопоэза.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.