Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теплопотери здания и их снижение






Теплопотери в зданиях происходят, преимущественно, в виде дисперсии тепла наружными ограждениями, возникающей и усиливающейся при нарастании разницы температур внутреннего и наружного воздуха. Также в результате усиленной инфильтрации наружного (и соответственно, эксфильтрации внутреннего) воздуха под давлением ветра и вследствие возникновения в застройке различных аэродинамических эффектов (эффектов “угла”, “вихревого ролика”, Вентури, “связи”, “отверстий”, “канализации” и др., возникающих, как показывают исследования, при высоте застройки более 15 м).

С другой стороны, было установлено, что объемно-планировочными и ландшафтными средствами можно добиться существенного снижения теплопотерь, в частности, за счет:

сокращения площади наружных ограждений относительно внутреннего объема здания, т.е. повышением его пространственной и объемной компактности. Так, минимальные соотношения площади поверхности к внутреннему объему имеют шар, цилиндр и куб - именно эти формы обеспечат предельное снижение дисперсии тепла зданием.

 

По данным отечественных исследователей, изменение удельного периметра стен на 0.01 м приводит к изменению удельного расхода тепла на 1.25 - 1.75% в пяти и на 1.5 - 2.0% в девятиэтажном здании. Кроме того, компактность формы повышается с увеличением ее размеров: так, существенное снижение удельного расхода тепла происходит при увеличении ширины корпуса здания (с 11 до 14 м - на 6 - 7%, до 15 - 16 м - на 12 - 14%, до 18 м - на 16 - 20%). Методика оценки энергоэффективности здания по показателям его компактности достаточно хорошо разработана и освещена в литературе.

 

Оптимизации площади светопроемов, объективно обладающих высокой теплопроводностью и потому являющихся основным источником теплопотерь в зданиях. Например, при увеличении нормативной освещенности жилых помещений с 1: 5.5 до 1: 4 (соотношения площадей светопроема и пола) удельный расход теплоты возрастает в среднем на 5% в пяти и на 6 - 7% в девятиэтажных зданиях.

 

Теплового зонирования отапливаемого объема здания и устройства вокруг него т. наз. буферных пространств - неотапливаемых помещений с промежуточной (относительно внутренней и внешней среды) температурой; известно, что скорость теплопередачи, а следовательно, и масштабы теплопотерь, определяются амплитудой температур контактирующих сред: скорость тем выше, чем больше эта амплитуда; таким образом, тепловое зонирование, предполагающее формирование теплового ядра здания из помещений с максимальными расчетными температурами и теплоемкими конструкциями, и буферные пространства, формирующие двойную оболочку отапливаемого объема создают эффект " энергетического каскада” опосредованной (многоступенчатой) теплопередачи от внутренней среды к внешней.

 

Сокращение амплитуды температур контактирующих сред позволяет заметно снизить теплопотери, соответственно, наибольший эффект буферные пространства дают при размещении их в тех частях здания, где наблюдаются максимальные амплитуды температур отапливаемых помещений и внешней среды. Например, в зоне покрытия (где функции буфера выполняет чердак) и у плохо прогреваемых солнцем стен северной ориентации (буфером могут являться различные хозяйственные пристройки, пристенные холодные шкафы и т.п.); кроме того, буферные пространства защищают ограждения от ветровых воздействий, исключая нежелательную " напорную" инфильтрацию наружного воздуха в отапливаемый объем здания и переувлажнения, влекущего, как правило, резкое ухудшение теплотехнических качеств ограждений и их ускоренное разрушение.

 

Рассеивания воздушных потоков - использованием соответствующих пространственных и объемных форм ландшафта (в т.ч. зданий); известно, что кроме собственно скорости воздушного потока сила ветрового напора определяется углом падения потока на поверхность. Поэтому наименьшее ветровое давление испытывают обтекаемые (аэродинамичные) - сферические, цилиндрические и др. криволинейные, а также коноидальные и пирамидальные (“эффект пирамиды”) объемные формы (по данным Ю. Лебедева, наиболее приспособленной к восприятию, например, гравитационных и ветровых нагрузок является форма конуса.

 

Снижения скорости движения и турбулентности воздушных потоков вблизи зданий (их ограждающих конструкций) - например, использованием форм растительности в качестве естественных ветрозащитных барьеров: известно, что растительные формы различной плотности и высоты способны весьма значительно сокращать скорость ветрового потока, обеспечивая при этом зоны " ветрового затишья" глубиной, равной 20 - 25 высотам такого растительного барьера. Пристенная растительность также существенно снижает активность ветровых воздействий на здания (турбулентность воздушных потоков у наружных ограждений), суммарное снижение теплопотерь благодаря разумному использованию растительных форм ландшафта может достигать 40%.

 

Наиболее эффективно проблемы снижения энергопотерь решаются, как показывает практика, при комплексном привлечении этих и других средств, в основе использования которых лежат бионические принципы организации, формообразования и конструирования архитектурно-градостроительных объектов, раскрывающие эволюционно выработанные механизмы адаптации к условиям внешней cреды различных живых организмов.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.