Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Аналитическое выражение работы процесса. Обратимые и необратимые процессы.






Уравнение первого закона термодинамики (3.27) обычно записывается с расположением теплоты в левой части, а изменения внутренней энергии и работы расширения в правой

 

(3.29)

 

Для одного килограмма вещества оно примет вид:

(3.30)

 

Это интегральная форма записи первого закона термодинамики, т.е. целиком для всего процесса, происходящего с веществом от состояния 1 до состояния 2. Дифференциальная форма записи первого закона термодинамики, т.е. для элементарного участка процесса, будет иметь вид:

(3.31)

(3.32)

 

В этих уравнениях величинами L' и l' обозначается работа изменения объема, совершаемая телом в реальных необратимых процессах. Работа расширения увеличивает механическую энергию системы, т.е. она может передаваться или внешнему потребителю работы, или внешней среде. При обратимых процессах вся работа изменения объема тела затрачивается на преодоление внешнего давления и аккумулируется системой в форме механической энергии. Расчетное выражение работы изменения объема обратимого процесса было получено ранее в виде

 

При необратимых процессах изменения объема тела имеет место трение. Например, трение газа о стенки емкости или расширение газа идет с образованием вихревого движения. Трение приводит к увеличению внутренней энергии тела (оно нагревается). Поэтому внешняя работа расширения оказывается меньше работы изменения объема обратимого процесса на величину работы трения

(3.33)

 

здесь l и l'- работа обратимого и необратимого процесса, lтр - работа трения. Работа трения lтр переходит в конечном результате в теплоту трения dqтр. Тогда первый закон термодинамики для необратимого процесса расширения тела можно записать в виде:

перегруппировав члены данного уравнения, окончательно получим

(3.34)

 

где q* - полная теплота, полученная телом в необратимом процессе. Для обратимых процессов qтр=0, и первый закон термодинамики обратимого процесса будет иметь вид

(3.35)

 

Поскольку внутренняя энергия может быть представлена в виде функции любой пары независимых параметров состояния (она сама параметр состояния), то выражение (3.35) можно записать в виде частных производных от этих параметров состояния. Например, выразив du в частных производных от P и v, получим выражения

(3.36)

 

(3.37)

 

Таких уравнений можно записать столько, сколько существует пар независимых параметров состояния. Значение дифференциалных уравнений первого закона термодинамики очень велико. Поскольку, зная функциональную взаимосвязь термических параметров состояния вещества (Р, v, T), используя эти дифференциальные уравнения, можно расчитать энергетические параметры данного вещества (u, s и т.п.) и его теплоемкости, а так же решать и обратную задачу.

В изолированной термодинамической системе через некоторый промежуток времени устанавливается внутреннее равновесие, при котором рабочее тело по всей массе имеет одинаковую температуру и давление.

При равенстве давлений в системе и в окружающей среде изменение объема рабочего тела прекращается, и передача энергии в форме работы отсутствует (система находится в механическом равновесии со средой). Равенство температур рабочего тела и среды обеспечивает термическое равновесие. При этом между системой и окружающей средой не возникает передачи энергии в форме теплоты. Термодинамический процесс возможен только при нарушении механичес­кого или термического равновесия, и чем сильнее нарушается равновесие, тем быстрее протекает процесс. Все реальные термодинамические системы не изолированы от окружающей среды, которая выводит их из равновесия. Поэтому они являются неравновесными. Учитывая чрезвычайную сложность теплотехнических расчетов таких процессов, на практике их заменяют равновесными, то есть такими, при которых система проходит последовательно бесчисленное множество равновесных состояний. Эти равновесные процессы называют квазистатическими.

Рис. 5.1. Линии обратимых прямого A-B и обратного B-A процессов на pv-диаграмме

Для любой термодинамической системы можно представить два состояния, между которыми будет проходить два процесса: один от первого состояния ко второму и другой, наоборот, от второго состояния к первому. Первый процесс называют прямым, второй — обратным. Если после прямого процесса 1—2 следует обратный 2—1 и при этом термодинамическая система возвращается в исходное состояние, то такие процессы принято считать обратимыми. При обратимых процессах система в обратном процессе проходит через те же равновесные состояния, что и в прямом процессе. При этом ни в окружающей среде, ни в самой системе не возникает никаких остаточных явлений, то есть не имеет значения идет процесс А-В или В-А (рис. 5.1).

Различают механически и термически обратимые процессы.

В механически обратимом процессе обмен энергией между системой и окружающей средой протекает в форме работы при бесконечно малой разности давлений.

В термически обратимом процессе термодинамическая система обменивается с окружающей средой энергией в форме теплоты при бесконечно малой разности температур.

Любой равновесный термодинамический процесс изменения состояния рабочего тела будет всегда обратимым. Обратимые процессы являются идеальными.

Действительные термодинамические процессы совершаются при конечной разности давлений и температур рабочего тела и окружающей среды и поэтому являются неравновесными. Такие процессы необратимы.

Необратимый термодинамический процесс – это процесс, при котором система не возвращается в исходное состояние после обратного процесса. Все необратимые процессы протекают в направлении достижения в термодинамической системе равновесия, то есть выравнивания в ней давлений, температур, концентраций.

11. Теплоемкость газов. Энтропия. Основные определения. Массовая, объемная и мольная теплоемкости газов. Аналитическое выражение для теплоемкости СV и CP.

Элементы молекулярно-кинетической и квантовой теории теплоемкости. Истинная и средняя теплоемкость. Отношение теплоемкостей СV и CP. Определение gv и gp. для идеальных газов по таблицам теплоемкостей.

Термодинамические процессы идеальных газов. Общие вопросы исследования процессов. Изохорный процесс.

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.