Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Линейные формы






 

Определение.Линейной формой на линейном пространстве над полем называется линейный оператор .

Мы уже знаем, что множество всех линейных форм на линейном пространстве также является линейным пространством над тем же полем, что и , относительно операций сложения линейных форм и умножения линейной формы на число. Пространство будем называть сопряженным пространству , и обозначать , его элементы назовем ковекторами и тоже для удобства отметим стрелками, но снизу (например, ).

Рассмотрим -мерное линейное пространство и выберем в нем какой-либо базис:

. (4.37)

Пусть – произвольный вектор пространства , – линейная форма. Тогда

. (4.38)

Мы видим, что значение линейной формы для вектора зависит от его координат и некоторых чисел , вовсе с вектором не связанных. Обозначим и назовем эти числа компонентами формы в базисе (4.37). Теперь (4.38) можно переписать и так: .

Выберем в ещё один базис

(4.39)

и обозначим компоненты линейной формы в базисе (4.39).Тогда

= = [определение матрицы перехода] = =

= [линейность ] = .

Мы получили закон изменения компонент линейной формы при изменении базиса.

В пространстве линейных форм выберем линейных форм

(4.40)

по следующему принципу:

,

т. е. форма принимает значение, равное 0, для всех базисных векторов, за исключением одного, , для которого она принимает значение, равное 1. Существование таких форм вытекает из теоремы 4.1. Докажем линейную независимость (4.40). Как обычно, составим линейную комбинацию и приравняем ее нейтральному элементу.

{(4.40) линейно независима}.

Пусть теперь – произвольная линейная форма, – ее компоненты в базисе (4.40). Обозначим . Тогда

Таким образом, = , следовательно, система (4.40) в пространстве является системой образующих, а значит, и базисом. Итак, пространство, сопряженное к конечномерному линейному пространству, имеет ту же размерность. Базисы (4.37) и (4.40) пространств и называются сопряженными или взаимными. Следовательно, компоненты линейной формы в базисе (4.37) пространства – это её координаты во взаимном базисе пространства .

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.