Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Линейная







 

Нелинейная немонотонная


Рис. 6.1. Примеры графиков часто встречающихся функций

В психологии, как и во многих других науках, при изучении взаимосвязи признаков из поля зрения исследователя неизбежно выпадает множество воз­можных причин изменчивости этих признаков. Результатом является то, что даже существующая в реальности функциональная связь между переменными выступает эмпирически как вероятностная (стохастическая): одному и тому же значению одной переменной соответствует распределение различных значе­ний другой переменной (и наоборот). Простейшим примером является соотно­шение роста и веса людей. Эмпирические результаты исследования этих двух признаков покажут, конечно, положительную их взаимосвязь. Но несложно догадаться, что она будет отличаться от строгой, линейной, положительной — идеальной математической функции, даже при всех ухищрениях исследова­теля по учету стройности или полноты испытуемых. (Вряд ли на этом основа­нии кому-то придет в голову отрицать факт наличия строгой функциональ­ной связи между длиной и весом тела.)

Итак, в психологии, как и во многих других науках, функциональная вза­имосвязь явлений эмпирически может быть выявлена только как вероятно­стная связь соответствующих признаков. Наглядное представление о характере вероятностной связи дает диаграмма рассеивания — график, оси которого со­ответствуют значениям двух переменных, а каждый испытуемый представля­ет собой точку (рис. 6.2). В качестве числовой характеристики вероятностной связи используются коэффициенты корреляции.


Рис. 6.2. Примеры диаграмм рассеивания и соответствующих коэффициентов корреляции

Коэффициент корреляции — это количественная мера силы и направления юятностной взаимосвязи двух переменных; принимает значения в диапазоне от-1 до+1.

Сила связи достигает максимума при условии взаимно однозначного соответствия: когда каждому значению одной переменной соответствует только одно значение другой переменной (и наоборот), эмпирическая взаимосвязь при этом совпадает с функциональной линейной связью. Показателем силы связи является абсолютная (без учета знака) величина коэффициента корреляции. Направление связи определяется прямым или обратным соотношением значений двух переменных: если возрастанию значений одной переменной соответствует возрастание значений другой переменной, то взаимосвязь называется прямой (положительной); если возрастанию значений одной переменной соответствует убывание значений другой переменной, то взаимосвязь является обратной (отрицательной). Показателем направления связи является знак коэффициента корреляции.

школьника на успешность решения сложной арифметической задачи? Для ответа на подобные вопросы исследователь должен измерить два интересую­щих его показателя у каждого члена выборки. Данные для изучения взаимо­связи затем сводятся в таблицу, как в приведенном ниже примере.

ПРИМЕР 6.1

В таблице приведен пример исходных данных измерения двух показателей интел­лекта (вербального и невербального) у 20 учащихся 8-го класса.

 

Вербальный IQ (х) Невербальный IQ (у)
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
Средние: 9, 8 10, 4

Связь между этими переменными можно изобразить при помощи диаграммы рас­сеивания (см. рис. 6.3). Диаграмма показывает, что существует некоторая взаимо­связь измеренных показателей: чем больше значения вербального интеллекта, тем (преимущественно) больше значения невербального интеллекта.

Прежде чем дать формулу коэффициента корреляции, попробуем просле­дить логику ее возникновения, используя данные примера 6.1. Положение каждой i-точки (испытуемого с номером 0 на диаграмме рассеивания отно­сительно остальных точек (рис. 6.3) может быть задано величинами и знака­ми отклонений соответствующих значений переменных от своих средних ве­личин: (хiМх) и (yi—My). Если знаки этих отклонений совпадают, то это свидетельствует в пользу положительной взаимосвязи (большим значениям

Рис. 6.3. Диаграмма рассеивания для данных примера 6.1

по х соответствуют большие значения по у или меньшим значениям по х со­ответствуют меньшие значения по у).

ПРИМЕР

Для испытуемого № 1 отклонение от среднего по х и по у положительное, а для испытуемого № 3 и то и другое отклонения отрицательные. Следовательно, данные того и другого свидетельствуют о положительной взаимосвязи изучаемых призна­ков. Напротив, если знаки отклонений от средних по х и по у различаются, то это будет свидетельствовать об отрицательной взаимосвязи между признаками. Так, для испытуемого № 4 отклонение от среднего по х является отрицательным, по у — положительным, а для испытуемого № 9 — наоборот.

Таким образом, если произведение отклонений (хi- Мх) * i-My) поло­жительное, то данные i-испытуемого свидетельствуют о прямой (положи­тельной) взаимосвязи, а если отрицательное — то об обратной (отрицатель­ной) взаимосвязи. Соответственно, если х и у в основном связаны прямо пропорционально, то большинство произведений отклонений будет поло­жительным, а если они связаны обратным соотношением, то большинство произведений будет отрицательным. Следовательно, общим показателем для силы и направления взаимосвязи может служить сумма всех произведений отклонений для данной выборки:

 

∑ (xi-Mx) i-My)


При прямо пропорциональной связи между переменными эта величина является большой и положительной — для большинства испытуемых откло­нения совпадают по знаку (большим значениям одной переменной соответ­ствуют большие значения другой переменной и наоборот). Если же х и у име­ют обратную связь, то для большинства испытуемых большим значениям одной переменной будут соответствовать меньшие значения другой перемен­ной, т. е. знаки произведений будут отрицательными, а сумма произведений в целом будет тоже большой по абсолютной величине, но отрицательной по знаку. Если систематической связи между переменными не будет наблюдать­ся, то положительные слагаемые (произведения отклонений) уравновесятся отрицательными слагаемыми, и сумма всех произведений отклонений будет близка к нулю.

Чтобы сумма произведений не зависела от объема выборки, достаточно ее усреднить. Но мера взаимосвязи нас интересует не как генеральный параметр, а как вычисляемая его оценка — статистика. Поэтому, как и для формулы дис­персии, в этом случае поступим так же, делим сумму произведений отклоне­ний не на N, а на N — 1. Получается мера связи, широко применяемая в физи­ке и технических науках, которая называется ковариацией (Covariance):

COVxy=(∑ (xi-Mx) i-My) )/((N-1)

В психологии, в отличие от физики, большинство переменных измеряют­ся в произвольных шкалах, так как психологов интересует не абсолютное зна­чение признака, а взаимное расположение испытуемых в группе. К тому же ковариация весьма чувствительна к масштабу шкалы (дисперсии), в которой измерены признаки. Чтобы сделать меру связи независимой от единиц изме­рения того и другого признака, достаточно разделить ковариацию на соот­ветствующие стандартные отклонения. Таким образом и была получена фор­мула коэффициента корреляции К. Пирсона:

rxy =(∑ (xi-Mx) i-My) )/((N-1)qxqy) (6.1)

 

или, после подстановки выражений для qх и qy:

rxy =(∑ (xi-Mx) i-My) )/ (√ ∑ (xi-Mx)2 i-My)2)


 

Уравнение (6.1) является основной формулой коэффициента корреляции Пирсона. Эта формула вполне осмысленна, но не очень удобна для вычисле­ний «вручную» или на калькуляторе. Поэтому существуют производные фор-

мулы — более громоздкие по виду, менее доступные осмыслению, но упро­щающие расчеты. Мы не будем их здесь приводить, так как один раз в жизни можно в учебных целях посчитать корреляцию Пирсона и по исходной фор­муле «вручную», а в дальнейшем для обработки реальных данных все равно придется воспользоваться компьютерными программами.

ПРИМЕР 6.2

Для расчета коэффициента корреляции воспользуемся данными примера 6.1 о вер­бальном и невербальном IQ, измеренном у 20 учащихся 8-го класса. К двум столб­цам с исходными данными добавляются еще 5 столбцов для дополнительных рас­четов, и внизу — строка сумм.

 

X Y (xi-Mx) i-My) (xi-Mx)2 i-My)2 (xi-Mx) i-My)
      3, 2 1, 6 10, 24 2, 56 5, 12
      -0, 8 0, 6 0, 64 0, 36 -0, 48
      -1, 8 -2, 4 3, 24 5, 76 4, 32
      -0, 8 1, 6 0, 64 2, 56 -1, 28
      -2, 8 -1, 4 7, 84 1, 96 3, 92
      -0, 8 0, 6 0, 64 0, 36 -0, 48
      -1, 8 -1, 4 3, 24 1, 96 2, 52
      3, 2 2, 6 10, 24 6, 76 8, 32
      1, 2 -1, 4 1, 44 1, 96 -1, 68
      2, 2 -0, 4 4, 84 0, 16 -0, 88
      -1, 8 -1, 4 3, 24 1, 96 2, 52
      -0, 8 -2, 4 0, 64 5, 76 1, 92
      0, 2 -0, 4 0, 04 0, 16 -0, 08
      0, 2 1, 6 0, 04 2, 56 0, 32
      2, 2 -0, 4 4, 84 0, 16 -0, 88
      0, 2 -0, 4 0, 04 0, 16 -0, 08
      -1, 8 0, 6 3, 24 0, 36 -1, 08
      -0, 8 -0, 4 0, 64 0, 16 0, 32
      0, 2 0, 6 0, 04 0, 36 0, 12
      1, 2 2, 6 1, 44 6, 76 3, 12
    0, 00 0, 00 57, 2 42, 8 25, 6

На первом шаге подсчитываются суммы всех значений одного, затем — другого признака для вычисления соответствующих средних значений Мх и Му: Мх = 9, 8; М, = 10, 4.

Далее для каждого испытуемого вычисляются отклонения от среднего: для Х идля Y. Каждое отклонение от среднего возводится в квадрат. В последнем столбике за­писывается результат перемножения двух отклонений от среднего для каждого ис­пытуемого.

Суммы отклонений от среднего для каждой переменной должны быть равны нулю (с точностью до погрешности вычислений). Сумма квадратов отклонений необхо­дима для вычисления стандартных отклонений по известной формуле (4.7):


Qx=√ 57, 2/19=1, 735; Qy=

 


Сумма произведений отклонений дает нам значение числителя, а произведение стандартных отклонений и (N— 1) — значение знаменателя формулы коэффици­ента корреляции:

Rxy=25, 6/(1, 735*1< 501*19)=0, 517

Если значения той и другой переменной были преобразованы в z-значения по формуле:


 


то формула коэффициента корреляции г-Пирсона выглядит проще:

N

г =

Отметим еще раз: на величину коэффициента корреляции не влияет то, в каких единицах измерения представлены признаки. Следовательно, любые линейные преобразования признаков (умножение на константу, прибавление кон­станты: y-t =Xjb + а) не меняют значения коэффициента корреляции. Исключе­нием является умножение одного из признаков на отрицательную константу: коэффициент корреляции меняет свой знак на противоположный.

На рис. 6.2 приведены примеры диаграмм рассеивания для различных зна­чений коэффициента корреляции. Обратите внимание: на последнем рисун­ке визуально наблюдается нелинейная взаимосвязь между переменными, од­нако коэффициент корреляции равен нулю. Таким образом, коэффициент корреляции Пирсона есть мера прямолинейной взаимосвязи; он не чувствителен к криволинейным связям.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.