Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Сцинтилляционные детекторы






 

Процесс образования световых вспышек в результате поглощения энергии веществом известно как явление люминесценции.Причинами, вызывающими люминесценцию, могут быть свет, нагревание, механическое напряжение, химическая реакция, а также ионизирующее излучение. Световые вспышки, возникающие в результате поглощения веществом ионизирующего излучения, называют сцинтилляциями. А вещества, в которых под действием заряженных частиц возникают фотоны видимой или ультрафиолетовой части спектра излучения, называют сцинтилляторами.

Сцинтилляторами могут быть только те вещества, в которых велика вероятность испускания фотонов возбужденными атомами и молекулами и мала вероятность поглощения ими «собственных» фотонов. Механизм возникновения сцинтилляций зависит от природы вещества сцинтиллятора (рассмотрен ниже).

Сцинтилляционные детекторы представляют собой совокупность сцинтиллятора и фотоприемника, регистрирующего фотоны, испускаемые веществом сцинтиллятора под действием ионизирующего излучения. В качестве фотоприемников используют различные типы приборов: фотоумножители, фотоэлементы, полупроводниковые фотодиоды и др.

Первый сцинтилляционный детектор, названный спинтарископом, представлял собой экран, покрытый слоем ZnS. Вспышки, возникавшие при попадании в него заряженных частиц, фиксировались с помощью микроскопа. Именно с таким детектором Гейгер и Марсден в 1909 году провели опыт по рассеянию α -частиц атомами золота, приведший к открытию атомного ядра.

С 1944 года световые вспышки от сцинтиллятора регистрируют фотоэлектронными умножителями (ФЭУ), которые преобразуют вспышку света в импульс электрического тока и усиливают его в 106 раз и более. Получаемый на выходе ФЭУ электрический сигнал подается на вторичные электронные устройства для его обработки. Позже появились и другие фотоприемники. Общая блок-схема сцинтилляционного счетчика представлена на рис. 5.6).

 

Рис. 5.6. Блок- схема сцинтилляционного счетчика

Световые кванты, образованные в сцинтилляторе и падающие на фотокатод, вызывают фотоэффект. Возникшие при этом фотоэлектроны попадают в электрическое поле, ускоряются и фокусируются на первом диноде. При ударах электронов о первый динод происходит вторичная эмиссия. Электроны, выбитые из первого динода, ускоряются в следующем межэлектродном промежутке и, попадая на второй динод, вызывают, в свою очередь, вторичную эмиссию со второго дтода и т.д. Таким образом, число электронов от динода к диноду лавинообразно нарастает. Электроны с последнего динода собираются на аноде ФЭУ, при этом на анод приходит в 104–107 раз больше электронов, чем вылетело с фотокатода. Возникает электрический импульс, который и регистрируется.

Различные комбинации сцинтилляторов и фотоприемников подбираются в зависимости от условий эксперимента, измеряемых характеристик ионизирующего излучения, а также от уровня точности проводимых измерений.

Так как в органических сцинтилляторах возбуждаются молекулярные уровни, которые излучают в ультрафиолетовой области, для согласования со спектральной чувствительностью регистрирующих свет устройств (ФЭУ и фотодиодов) используются светопреобразователи, которые поглощают ультрафиолетовое излучение и переизлучают видимый свет в области 400 нм.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.