Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Типовые примеры.






1. Найти координаты вектора в базисе , если известно

► В соответствии с определением матрица перехода от базиса к базису есть

.

Обозначим координаты вектора в базисе через , а в базисе через . Искомые координаты связаны с известными координатами следующим соотношением:

.

Видно, что для получения координат необходимо вычислить матрицу, обратную . Используя стандартную процедуру, имеем

.

Вычислим теперь координаты :

. ◄

2. Найти матрицу перехода от базиса к базису по данным разложениям этих векторов в базисе :

.

► Чтобы построить матрицу перехода от базиса к базису , необходимо найти разложение векторов по базису . Сделаем это, представив в виде разложения по с неизвестными координатами, которые требуется определить:

,

или с учётом вида этих векторов в базисе

.

Откуда для координат имеем

Теперь, зная разложение по , выпишем матрицу :

.◄

5. Линейные оболочки и подпространства. Подпространством линейного пространства называется множество векторов из такое, что для любых двух векторов и из и любых двух вещественных чисел и линейная комбинация также принадлежит .

Утверждение. Подпространство само является линейным про­странством.

Линейной оболочкой системы векторов называется множество всех линейных комбинаций векторов . Обозначается .

Утверждение. Линейная оболочка системы векторов является подпространством.

Пересечением двух подпространств и на­зывается множество всех векторов, принадлежащих одновре­менно и , и . Обозначается .

Суммой двух подпространств и называется множество всех векторов , представимых в виде , где , . Обозначается .

Утверждение. Сумма и пересечение подпространств и являются линейными пространствами, и их размерности связаны равенством

+ = + .

Сумма двух подпространств называется прямой суммой, если пересечение этих подпространств состо­ит только из нулевого вектора.

Типовой пример. Найти размерность и какой-нибудь базис суммы и пересечения подпространств, порождённых векторами .

► Вычислим вначале размерность подпространств. С этой целью установим, являются ли линейно независимыми векторы, порождающие данные подпространства. Для подпространства , порождённого векторами , равенство нулю линейной комбинации , эквивалентное системе уравнений , достигается лишь при условии . Следовательно, векторы линейно

независимы и размерность подпространства равна 2: . Для подпространства , порождённого векторами , проводя аналогичный анализ, получим .

Вычислим теперь размерность пересечения подпространств и . По определению векторы, составляющие пересечение, принадлежат одновременно обоим подпространствам. Произвольный вектор подпространства является линейной комбинацией базисных векторов : . Аналогично для подпространства имеем , тогда условие принадлежности пересечению есть или .

Это условие представляет собой систему уравнений относительно коэффициентов . Составим матрицу системы и упростим её с помощью элементарных преобразований:

Как видно ранг системы равен 3. Значит ФСР состоит из одного линейно независимого вектора. Найдём его, решив систему уравнений, соответствующих последней матрице, получим ,

откуда .

Полагая свободное неизвестное , для остальных имеем

. Итак, пересечение подпространств имеет один базисный вектор

.

Размерность пересечения . Следовательно, в соответствии с равенством

размерность суммы подпространств . В качестве базиса суммы подпространств можно взять, наТиповой пример, векторы , дополненные вектором . В линейной независимости векторов убедиться нетрудно.◄

 

 

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.