Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Типовые примеры. 1. Являются ли линейно зависимыми (независимыми) векторы






1. Являются ли линейно зависимыми (независимыми) векторы

► По определению линейная зависимость или независимость векторов устанавливается исходя из условия равенства нулю линейной комбинации этих векторов

или в развёрнутом виде

Если эти равенства выполняются при условии, что хотя бы один из коэффициентов отличен от нуля, то векторы линейно зависимы. Записанные равенства представляют собой однородную систему линейных уравнений относительно коэффициентов . Эта система имеет нетривиальное решение (т.е. решение, в котором не все одновременно равны нулю) только при условии равенства нулю определителя системы. В рассматриваемом случае определитель системы равен

Таким образом система имеет лишь тривиальное решение и исходная совокупность векторов линейно независима.◄

2. При каких вектор линейно выражается через векторы

► По условию задачи надо найти такие , при которых выполняется равенство

или в развёрнутом виде

Записанные соотношения представляют собой систему неоднородных линейных уравнений относительно - коэффициентов линейной комбинации. В соответствии с теоремой Кронекера-Капелли эта система совместна, если ранг основной матрицы системы равен рангу расширенной матрицы. Выпишем расширенную матрицу для заданных условий:

Сначала определим ранг основной матрицы. Видно, что отличные от нуля миноры второго порядка в матрице имеются, наТиповой пример, минор, стоящий в левом верхнем углу. Вычислим теперь минор третьего порядка (определитель) основной матрицы

.

Следовательно, ранг основной матрицы равен двум. Таким образом рассматриваемая система будет совместна, если ранг расширенной матрицы также будет равен двум. Для этого необходимо, чтобы второй минор третьего порядка расширенной матрицы был равен нулю, т.е.

откуда следует

2. Базис и размерность линейного пространства. Фундаментальным вопросом теории линейных пространств является вопрос о том, можно ли, а если можно, то как, произвольный вектор пространства представить в виде линейной комбинации фиксированного набора векторов из этого пространства. Далее мы получим ответ на этот вопрос.

Система линейно независимых векторов векторного пространства называется базисом этого пространства, если любой вектор из может быть представлен в виде линейной комбинации векторов этой системы, т.е. для каждого вектора существуют вещественные числа такие, что имеет место равенство

.

Это равенство называется разложением вектора по базису , а числа называются координатами вектора относительно базиса (или в базисе) .

Утверждение. Базисом линейного пространства решений одно­родной системы является ее фундаментальная система реше­ний.

ТЕОРЕМА (о единственности разложения по базису). Каждый вектор пространства может быть разложен по базису единственным образом, т.е. координаты каждого вектора в базисе определяются однозначно.

Главное значение базиса заключается в том, что операции сложения векторов и умножения их на числа при задании базиса превращаются в соответствующие операции над числами – координатами этих векторов. А именно, справедлива следующая

ТЕОРЕМА. При сложении двух любых векторов линейного пространства их координаты (относительно любого базиса пространства) складываются; при умножении произвольного вектора на любое число все координаты этого вектора умножаются на .

Типовой пример. Исследуем вопрос о базисе пространства , введенного ранее при рассмотрении Типовой примеров векторных пространств. Покажем, что элементов указанного пространства образуют базис.

► Во-первых, эти векторы линейно независимы. Проверка линейной независимости набора состоит в определении значений , при которых возможно равенство

.

Но в силу только что доказанной теоремы

,

а последний вектор является нулевым лишь при условии . Во-вторых, всякий вектор заведомо представим в виде линейной комбинации векторов : и, значит, набор образует базис. ◄

Векторное пространство называется -мерным, если в нем существуют линейно независимых векторов, а любые векторов уже являются линейно зависимыми. При этом число называется размерностью пространства .

Размерность векторного пространства, состоящего из одного нулевого вектора, принимается равной нулю.

Размерность пространства обычно обозначают символом .

Векторное пространство называется бесконечномерным, если в нем существует любое число линейно независимых векторов. В этом случае пишут .

Выясним связь между понятиями базиса и размерности пространства.

ТЕОРЕМА. Если – векторное пространство размерности , то любые линейно независимых векторов этого пространства образуют его базис.

ТЕОРЕМА. Если векторное пространство имеет базис, состоящий из векторов, то .

Утверждение. Rn=n.

Типовые примеры.

1. Образуют ли базис в пространстве R3 векторы ?

► По определению базис составляют линейно независимые векторы. Линейная зависимость (или независимость) определяется исходя из анализа равенства нулю линейной комбинации этих векторов:

.

Последнее векторное уравнение после записи его по компонентам представляет собой систему трёх однородных уравнений относительно . Согласно схеме исследования линейной зависимости векторов вычислим определитель матрицы, составленной из координат векторов

Определитель системы равен нулю, следовательно, она имеет нетривиальное решение и это означает, что исходная группа векторов линейно зависима и не образует базис в R3. ◄

2. Найти размерность и один из базисов линейного пространства решений однородной системы:

► Представленная система состоит из трёх уравнений и содержит 5 неизвестных. Выпишем матрицу системы и упростим её с помощью элементарных преобразований, сначала поменяв местами строки 1 и 2, а затем вычитая новую первую строку, умноженную на 3 и 4, соответственно из второй и третьей строк:

Видно что ранг матрицы равен 2. Следовательно, две неизвестные являются главными, а три - свободными. Значит ФСР системы содержит 5-2=3 линейно независимых решения. Выберем в качестве главных . Это можно сделать, т.к. минор 2-го порядка, составленный из коэффициентов при этих неизвестных, отличен от нуля. Система, соответствующая преобразованной матрице, имеет вид

Отсюда, выражая главные неизвестные через свободные, получим общее решение

Или иначе:

.

 

Фундаментальная совокупность решений является базисом линейного пространства решений исходной системы и в данном случае имеет вид

 

Размерность искомого пространства равна 3.◄

 

Матрицей перехода от базиса к базису называется матрица вида

где для каждого в -ом столбце стоят координаты вектора в базисе .

Утверждение. Координаты вектора в базисе и координаты этого же вектора в базисе связаны равенством

где - матрица перехода от базиса к базису .

Утверждение. Матрица перехода от базиса к бази­су и матрица обратного перехода от базиса к базису связаны равенством = .






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.