Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Виды трансляторов






РАЗДЕЛ 7. Трансляция, компиляция и интерпретация

Программа - это последовательность инструкций, предназначенных для выполнения компьютером. В настоящее время программы оформляются в виде текста, который записывается в файлы. Этот текст является результатом деятельности программиста и, несмотря на специфику формального языка, остаётся программой для программиста.

Процесс создания программы предполагает несколько этапов. За этапом разработки проекта программы следует этап программирования. На этом этапе пишется программа. Программистами этот текст воспринимается легче двоичного кода, поскольку различные мнемонические сокращения и имена заключают дополнительную информацию.

Файл с исходным текстом программы (его также называют исходным модулем) обрабатывается транслятором, который осуществляет перевод программы с языка программирования в понятную машине последовательность кодов.

Транслятор - программа или техническое средство, выполняющее трансляцию программы. Машинная программа, которая транслирует с одного языка на другой и, в частности, с одного языка программирования на другой. Обрабатывающая программа, предназначенная для преобразования исходной программы в объектный модуль.

Транслятор обычно выполняет также диагностику ошибок, формирует словари идентификаторов, выдаёт для печати тексты программы и т.д.

Трансляция программы - преобразование программы, представленной на одном из языков программирования, в программу на другом языке и, в определённом смысле, равносильную первой.

Язык, на котором представлена входная программа, называется исходным языком, а сама программа - исходным кодом. Выходной язык называется целевым языком или объектным кодом.

Виды трансляторов

Трансляторы подразделяют:

· Адресный. Функциональное устройство, преобразующее виртуальный адрес (англ. Virtual address) в реальный адрес (англ. Memory address).

· Диалоговый. Обеспечивает использование языка программирования в режиме разделения времени.

· Многопроходной. Формирует объектный модуль за несколько просмотров исходной программы.

· Обратный. То же, что детранслятор. См. также: декомпилятор, дизассемблер.

· Однопроходной. Формирует объектный модуль за один последовательный просмотр исходной программы.

· Оптимизирующий. Выполняет оптимизацию кода в создаваемом объектном модуле.

· Синтаксически-ориентированный (синтаксически-управляемый). Получает на вход описание синтаксиса и семантики языка и текст на описанном языке, который и транслируется в соответствии с заданным описанием.

· Тестовый. Набор макрокоманд языка ассемблера, позволяющих задавать различные отладочные процедуры в программах, составленных на языке ассемблера.

Трансляторы реализуются в виде компиляторов или интерпретаторов. С точки зрения выполнения работы компилятор и интерпретатор существенно различаются.

Компиля́ тор (англ. compiler - составитель, собиратель) -транслятор, выполняющий преобразование программы, составленной на исходном языке, в объектный модуль. Программа, переводящая текст программы на языке высокого уровня, в эквивалентную программу на машинном языке.

· Программа, предназначенная для трансляции высокоуровневого языка в абсолютный код или, иногда, в язык ассемблера. Входной информацией для компилятора (исходный код) является описание алгоритма или программа на проблемно-ориентированном языке, а на выходе компилятора — эквивалентное описание алгоритма на машинно-ориентированном языке (объектный код).

Компиляция -трансляция программы, составленной на исходном языке, в объектный модуль. Осуществляется компилятором.

Компилировать - проводить трансляцию машинной программы с проблемно-ориентированного языка на машинно-ориентированный язык.

Компилятор читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, который затем и выполняется.

Интерпретатор (англ. interpreter - истолкователь, устный переводчик) переводит и выполняет программу строка за строкой. Интерпретатор берёт очередной оператор языка из текста программы, анализирует его структуру и затем сразу исполняет (обычно после анализа оператор транслируется в некоторое промежуточное представление или даже машинный код для более эффективного дальнейшего исполнения). Только после того как текущий оператор успешно выполнен, интерпретатор перейдёт к следующему. При этом если один и тот же оператор будет выполняться в программе многократно, интерпретатор будет выполнять его так как, как будто встретил впервые. Вследствие этого программы, в которых требуется осуществить большой объём вычислений, будут выполняться медленно. Кроме того, для выполнения программы на другом компьютере там тоже должен стоять интерпретатор – ведь без него текст является просто набором символов.

По-другому можно сказать, что интерпретатор моделирует некоторую вычислительную виртуальную машину, для которой базовыми инструкциями служат не элементарные команды процессора, а операторы языка программирования.

 

Различия между компиляцией и интерпретацией.

1. После того, как программа откомпилирована, ни сама исходная программа, ни компилятор более не нужны. В то же время программа, обрабатываемая интерпретатором, должна заново переводиться на машинный язык при каждом очередном запуске программы.

2. Откомпилированные программы работают быстрее, но интерпретируемые проще исправлять и изменять.

3. Каждый конкретный язык ориентирован либо на компиляцию, либо на интерпретацию - в зависимости от того, для каких целей он создавался. Например, Паскаль обычно используется для решения довольно сложных задач, в которых важна скорость работы программ. Поэтому данный язык обычно реализуется с помощью компилятора.

С другой стороны, Бейсик создавался как язык для начинающих программистов, для которых построчное выполнение программы имеет неоспоримые преимущества.

Практически все языки программирования низкого уровня и третьего поколения, вроде ассемблера, Си или Модулы-2, являются компилируемыми, а более высокоуровневые языки, вроде Python или SQL, — интерпретируемыми.

Иногда для одного языка имеется и компилятор, и интерпретатор. В этом случае для разработки и тестирования программы можно воспользоваться интерпретатором, а затем откомпилировать отлаженную программу, чтобы повысить скорость ее выполнения. Существует взаимопроникновение процессов трансляции и интерпретации: интерпретаторы могут быть компилирующими (в том числе с динамической компиляцией), а в трансляторах может требоваться интерпретация для конструкций метапрограммирования (например, для макросов в языке ассемблера, условной компиляции в Си или для шаблонов в C++).

4. Трансляция и интерпретация - разные процессы: трансляция занимается переводом программ с одного языка на другой, а интерпретация отвечает за исполнение программ. Однако, поскольку целью трансляции как правило является подготовка программы к интерпретации, то эти процессы обычно рассматриваются вместе.

 

Вывод: Недостаток компилятора – трудоёмкость трансляции языков программирования, ориентированных на обработку данных сложных структур, часто заранее неизвестной или динамически меняющейся во время работы программы. Тогда в машинный код приходиться вставлять множество дополнительных проверок, анализировать наличие ресурсов операционной системы, динамически их захватывать и освобождать, формировать и обрабатывать в памяти компьютера сложные объекты, что на уровне жестко заданных машинных инструкций осуществить довольно трудно, а для задачи почти невозможно.

С помощью интерпретатора, наоборот, допустимо в любой момент остановить программу, исследовать содержимое памяти, организовать диалог с пользователем, выполнить сколь угодно сложные преобразования и при этом постоянно контролировать состояние окружающей программно - аппаратной среды, благодаря чему достигается высокая надёжность работы. Интерпретатор при выполнении каждого оператора проверяет множество характеристик операционной системы и при необходимости максимально подробно информирует разработчика о возникающих проблемах. Кроме того, интерпретатор очень удобен для использования в качестве инструмента изучения программирования, так как позволяет понять принципы работы любого отдельного оператора языка.

 


Процесс компиляции разделяется на несколько этапов:

1. Препроцессор. Исходная программа обрабатывается путём подстановки имеющихся макросов и заголовочных файлов.

2. Лексический и синтаксический анализ. Программа преобразовывается в цепочку лексем, а затем во внутреннее представление в виде дерева.

3. Глобальная оптимизация. Внутреннее представление программы неоднократно преобразовывается с целью сокращения размера и времени исполнения программы.

4. Генерация кода. Внутреннее представление преобразовывается в блоки команд процессора, которые преобразовываются в ассемблеровский текст или в объектный код.

5. Ассемблирование. Если генерируется ассемблерный текст, производится его ассемблирование с целью получения объектного кода.

6. Сборка. Сборщик соединяет несколько объектных файлов в исполняемый файл или библиотеку.

На фазе лексического анализа (ЛА) входная программа, представляющая собой поток символов, разбивается на лексемы - слова в соответствии с определениями языка. Основным формализмом, лежащим в основе реализации лексических анализаторов, являются конечные автоматы и регулярные выражения. Лексический анализатор может работать в двух основных режимах: либо как подпрограмма, вызываемая синтаксическим анализатором за очередной лексемой, либо как полный проход, результатом которого является файл лексем. В процессе выделения лексем ЛА может как самостоятельно строить таблицы имен и констант, так и выдавать значения для каждой лексемы при очередном обращении к нему. В этом случае таблица имен строится в последующих фазах (например, в процессе синтаксического анализа).

На этапе ЛА обнаруживаются некоторые (простейшие) ошибки (недопустимые символы, неправильная запись чисел, идентификаторов и др.).

 

Рассмотрим более подробно стадию лексического анализа.

Основная задача лексического анализа - разбить входной текст, состоящий из последовательности одиночных символов, на последовательность слов, или лексем, т.е. выделить эти слова из непрерывной последовательности символов. Все символы входной последовательности с этой точки зрения разделяются на символы, принадлежащие каким-либо лексемам, и символы, разделяющие лексемы (разделители). В некоторых случаях между лексемами может и не быть разделителей. С другой стороны, в некоторых языках лексемы могут содержать незначащие символы (например, символ пробела в Фортране). В Си разделительное значение символов-разделителей может блокироваться («\» в конце строки внутри «...»).

Обычно все лексемы делятся на классы. Примерами таких классов являются числа (целые, восьмеричные, шестнадцатиричные, действительные и т.д.), идентификаторы, строки. Отдельно выделяются ключевые слова и символы пунктуации (иногда их называют символы-ограничители). Как правило, ключевые слова - это некоторое конечное подмножество идентификаторов. В некоторых языках (например, ПЛ/1) смысл лексемы может зависеть от ее контекста и невозможно провести лексический анализ в отрыве от синтаксического.

С точки зрения дальнейших фаз анализа лексический анализатор выдает информацию двух сортов: для синтаксического анализатора, работающего вслед за лексическим, существенна информация о последовательности классов лексем, ограничителей и ключевых слов, а для контекстного анализа, работающего вслед за синтаксическим, важна информация о конкретных значениях отдельных лексем (идентификаторов, чисел и т.д.).

Таким образом, общая схема работы лексического анализатора такова. Сначала выделяется отдельная лексема (возможно, используя символы-разделители). Ключевые слова распознаются либо явным выделением непосредственно из текста, либо сначала выделяется идентификатор, а затем делается проверка на принадлежность его множеству ключевых слов.

Если выделенная лексема является ограничителем, то он (точнее, некоторый его признак) выдается как результат лексического анализа. Если выделенная лексема является ключевым словом, то выдается признак соответствующего ключевого слова. Если выделенная лексема является идентификатором - выдается признак идентификатора, а сам идентификатор сохраняется отдельно. Наконец, если выделенная лексема принадлежит какому-либо из других классов лексем (например, лексема представляет собой число, строку и т.д.), то выдается признак соответствующего класса, а значение лексемы сохраняется отдельно.

Лексический анализатор может быть как самостоятельной фазой трансляции, так и подпрограммой, работающей по принципу «дай лексему». В первом случае (рис. 3.1, а) выходом анализатора является файл лексем, во втором (рис. 3.1, б) лексема выдается при каждом обращении к анализатору (при этом, как правило, признак класса лексемы возвращается как результат функции «лексический анализатор», а значение лексемы передается через глобальную переменную). С точки зрения обработки значений лексем, анализатор может либо просто выдавать значение каждой лексемы, и в этом случае построение таблиц объектов (идентификаторов, строк, чисел и т.д.) переносится на более поздние фазы, либо он может самостоятельно строить таблицы объектов. В этом случае в качестве значения лексемы выдается указатель на вход в соответствующую таблицу.

Рис. 3.1:  

 

Работа лексического анализатора задается некоторым конечным автоматом. Однако, непосредственное описание конечного автомата неудобно с практической точки зрения. Поэтому для задания лексического анализатора, как правило, используется либо регулярное выражение, либо праволинейная грамматика. Все три формализма (конечных автоматов, регулярных выражений и праволинейных грамматик) имеют одинаковую выразительную мощность. В частности, по регулярному выражению или праволинейной грамматике можно сконструировать конечный автомат, распознающий тот же язык.

 

Основная задача синтаксического анализа - разбор структуры программы. Как правило, под структурой понимается дерево, соответствующее разбору в контекстно-свободной грамматике языка. В настоящее время чаще всего используется либо LL(1) - анализ (и его вариант - рекурсивный спуск), либо LR(1)-анализ и его варианты (LR(0), SLR(1), LALR(1) и другие). Рекурсивный спуск чаще используется при ручном программировании синтаксического анализатора, LR(1) - при использовании систем автоматизации построения синтаксических анализаторов.

Результатом синтаксического анализа является синтаксическое дерево со ссылками на таблицу имен. В процессе синтаксического анализа также обнаруживаются ошибки, связанные со структурой программы.

На этапе контекстного анализа выявляются зависимости между частями программы, которые не могут быть описаны контекстно- свободным синтаксисом. Это в основном связи «описание- использование», в частности анализ типов объектов, анализ областей видимости, соответствие параметров, метки и другие. В процессе контекстного анализа строится таблица символов, которую можно рассматривать как таблицу имен, пополненную информацией об описаниях (свойствах) объектов.

Основным формализмом, использующимся при контекстном анализе, являются атрибутные грамматики. Результатом работы фазы контекстного анализа является атрибутированное дерево программы. Информация об объектах может быть как рассредоточена в самом дереве, так и сосредоточена в отдельных таблицах символов. В процессе контекстного анализа также могут быть обнаружены ошибки, связанные с неправильным использованием объектов.

Затем программа может быть переведена во внутреннее представление. Это делается для целей оптимизации и/или удобства генерации кода. Еще одной целью преобразования программы во внутреннее представление является желание иметь переносимый компилятор. Тогда только последняя фаза (генерация кода) является машинно-зависимой. В качестве внутреннего представления может использоваться префиксная или постфиксная запись, ориентированный граф, тройки, четверки и другие.

Фаз оптимизации может быть несколько. Оптимизации обычно делят на машинно-зависимые и машинно-независимые, локальные и глобальные. Часть машинно-зависимой оптимизации выполняется на фазе генерации кода. Глобальная оптимизация пытается принять во внимание структуру всей программы, локальная - только небольших ее фрагментов. Глобальная оптимизация основывается на глобальном потоковом анализе, который выполняется на графе программы и представляет по существу преобразование этого графа. При этом могут учитываться такие свойства программы, как межпроцедурный анализ, межмодульный анализ, анализ областей жизни переменных и т.д.

Наконец, генерация кода - последняя фаза трансляции. Результатом ее является либо ассемблерный модуль, либо объектный (или загрузочный) модуль. В процессе генерации кода могут выполняться некоторые локальные оптимизации, такие как распределение регистров, выбор длинных или коротких переходов, учет стоимости команд при выборе конкретной последовательности команд. Для генерации кода разработаны различные методы, такие как таблицы решений, сопоставление образцов, включающее динамическое программирование, различные синтаксические методы.

Конечно, те или иные фазы транслятора могут либо отсутствовать совсем, либо объединяться. В простейшем случае однопроходного транслятора нет явной фазы генерации промежуточного представления и оптимизации, остальные фазы объединены в одну, причем нет и явно построенного синтаксического дерева.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.