Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Предыстория электротехники (до 1800 Г. )






1.1 Изучение атмосферного электричества

Важным и вполне закономерным шагом на пути изучения электрических явлений был переход от качественных наблюдений к установлению количественных связей и закономерностей, к разработке основ теории электричества. Наиболее значительный вклад в решение этих проблем был сделан петербургскими академиками М.В. Ломоносовым, Г.В. Рихманом и американским ученым Б. Франклином.

Выдающийся ученый-энциклопедист XVIII в. Михаил Васильевич Ломоносов (1711–1765 гг.) явился основоположником изучения электрических явлений в России, автором первой теории электричества. При поддержке М.В. Ломоносова его коллега академик Георг Вильгельм Рихман (1711–1753 гг.) разработал в 1745 г. оригинальную конструкцию первого электроизмерительного прибора непосредственной оценки – «электрического указателя» (рисунок 1), который принципиально отличался от уже известного электроскопа тем, что был снабжен деревянным квадрантом со шкалой, разделенной на градусы. Именно это усовершенствование, по словам Г.В. Рихмана, позволило измерять «большую или меньшую степень электричества». Для экспериментов Г.В. Рихману была предоставлена «при дворе особливая камера», которая, по-видимому, была первой отечественной электрической лабораторией. Электрический указатель М.В. Ломоносов и Г.В. Рихман использовали при создании «громовой машины» – первой стационарной установки для наблюдения за интенсивностью электрических разрядов в атмосфере (в середине XVIII в. это явление было еще совершенно неизученным).

«Громовая машина» в принципе отличалась от «электрического змея» Б. Франклина и приспособлений других исследователей, так как позволяла непрерывно наблюдать за изменением электричества, содержащегося в атмосфере при любой погоде.

С помощью «громовой машины» М.В. Ломоносов и Г.В. Рихман установили, что электричество содержится в атмосфере и при отсутствии грозы, они убедительно доказали электрическую природу молнии (рисунок 2).

 

Рисунок 1. Электрический указатель Рихмана (1 – деревянный квадрант с делениями;

2 – металлическая линейка; 3 – металлический шест; 4 – льняная нить)

Рисунок 2. Схема «громовой машины» (1 – электрический указатель;

2 – соединительная проволока; 3 – металлический шест на крыше дома)

 

Летом 1753 г. М.В. Ломоносов и Г.В. Рихман провели уникальный эксперимент и с помощью «громовой машины» доказали, что, как писала та же газета (1753, № 45), «... сие наблюдение почитается за чрезвычайное. Из сего наблюдения явствует, что... электрическая сила без действительного грому быть может. Ежели второе правда, то не гром и молния причина электрической силы в воздухе, но сама электрическая сила грому и молнии причина». Ученые при огромном стечении народа устроили пальбу из целой батареи пушек, гром «сотрясал небо», но «электрический указатель» ничего не показывал («искусством произведенный гром электрической силы не показывает»).

Выводы М.В. Ломоносова послужили одной из основ впервые разработанной им теории атмосферного электричества. На публичном собрании Академии наук в сентябре 1753 г. Г.В. Рихман, – писал М.В. Ломоносов, – «будет предлагать опыты а я – теорию и пользу от оной происходящую...».

Как известно, 25 июня 1753 г. во время грозы Г.В. Рихман, приблизившись к «электрическому указателю», был убит ударом в лоб «бледно-синеватым огненным шаром».

Трагическая смерть ученого послужила поводом для нападок на ученых, стремившихся проникнуть в тайны природы, со стороны духовенства и реакционных дворянских кругов. Опыты М.В. Ломоносова и Г.В. Рихмана называли кощунственными и требовали их прекратить, подчеркивая, что смерть Г.В. Рихмана – это «наказание господне за вторжение в область божью».

Но огромный научный авторитет М.В. Ломоносова и поддержка прогрессивных отечественных ученых позволили ему доказать недопустимость нанесения ущерба «славе и престижу» России, и в ноябре 1753 г. он выступил со своим знаменитым докладом «Слово о явлениях воздушных, от электрической силы происходящих», в котором (отметим, произнесенным на русском языке) впервые была изложена разработанная им строго научная материалистическая теория атмосферного электричества. По утверждению современных специалистов эта теория в своей принципиальной основе вполне соответствует современному представлению об этих явлениях. Кстати, М.В. Ломоносов подчеркивал, что он в своей теории «Франклину ничем не обязан», все у него «собственное и новое» [10].

По утверждению М.В. Ломоносова атмосферное электричество возникает в результате трения пылинок и других взвешенных частичек воздуха с капельками воды, происходящего при вертикальных перемещениях воздушных потоков. Он указывал, что существуют вертикальные восходящие и нисходящие потоки воздуха, которые «не токмо гремящей на воздухе электрической силы, но и многих других явлений в атмосфере и вне оной суть источник и начало».

Процесс электризации М.В. Ломоносов объяснял так: поток теплого воздуха, устремляющийся вверх (восходящий поток), увлекает за собой различные «жирные и горючие пары» и другие примеси, находящиеся в воздухе. Частицы этих паров М.В. Ломоносов называл «шаричками». Эти «шарички», по его мнению, имеют свойства, близкие к свойствам твердого тела, и не могут поэтому смешиваться с частичками воды (каплями дождя), встречающимися на их пути. В результате трения между «шаричками» и капельками воды возникают электрические заряды как на тех, так и на других. М.В. Ломоносов писал: «... жирные шарички горючих паров, которые ради разной природы с водяными слиться не могут и ради безмерной малости к свойствам твердого тела подходят, скорым встречным движением сражаются, трутся, электрическую силу рождают, которая, распространяясь по облаку, весь оный занимает».

В разработке этой теории М.В. Ломоносов ближе, чем кто-либо из его предшественников, подошел к современным теориям грозы.

М.В. Ломоносова не удовлетворяли многочисленные теории статического электричества, разработанные зарубежными исследователями, так как в большинстве из них, как он подчеркивал, «некоторые к составлению электрической теории самые нужнейшие вещи не довольно наблюдены были», и он явился инициатором объявления Академией наук конкурса на тему: «Сыскать подлинную электрической силы причину и составить точную ее теорию».

Свои воззрения на явления электричества М.В. Ломоносов сформулировал в 1756 г. в неопубликованном и сохранившемся лишь в виде тезисов труде «Теория электричества, разработанная математически путем». В отличие от большинства своих современников М.В. Ломоносов полностью отрицает существование особой электрической материи и рассматривает электричество как форму движения эфира. В его труде нет ни слова о различных субстанциях, с помощью которых многие ученые того времени пытались объяснить электрические явления. «Электрическая сила есть действие, вызванное легким трением... оно состоит в силах отталкивательных и притягательных, а также в произведении света и огня», пишет М.В. Ломоносов в своем труде.

«Эфирная» теория электричества, разработанная М.В. Ломоносовым, была передовой для своего времени; она являлась новым шагом к материалистическому взгляду на явления природы. Следует отметить, что эта теория получила дальнейшее развитие в трудах Леонарда Эйлера, а, позднее, в XIX в., ее придерживались Майкл Фарадей и другие крупнейшие ученые. М. Фарадей, например, считал электричество движением некоей заполняющей все пространство, пронизывающей все тела упругой среды.

Северные сияния, по мнению М.В. Ломоносова, также имеют электрическую природу; он рассматривал их как свечение, вызываемое электрическими зарядами в верхних слоях атмосферы.

М.В. Ломоносовым были проделаны интересные опыты со свечением разреженного воздуха в стеклянном наэлектризованном шаре (рисунок 3).

 

Рисунок 3. Прибор Ломоносова (1 – металлический стержень с трезубцем;

2 – проволочная пружина, припаянная к металлическому кружку)

 

 

Опыты М.В. Ломоносова по воспроизведению северных сияний на моделях были повторены только спустя 175 лет. Наблюдавшееся М.В. Ломоносовым свечение было по существу явлением электрического разряда в разреженном воздухе.

В поисках более безопасных методов измерения «электрической громовой силы» М.В. Ломоносов разработал своеобразный автоматический регистратор максимального значения грозового разряда; после удара молнии по прибору «сему увидеть можно коль велика была самая большая громовая сила». Основываясь на многочисленных опытах, М.В. Ломоносов пришел к выводу о целесообразности широкого применения громоотводов. Он писал: «Такие стрелы на местах, от обращения человеческого по мере удаленных, ставить за небесполезное дело почитаю, дабы ударяющая молния больше на них, нежели на головах человеческих и на храминах, силы свои изнуряла».

В отличие от Б. Франклина М.В. Ломоносов правильно указал на решающую роль заземления в устройстве громоотвода.

Весьма оригинальные представления о сущности электрических явлений были высказаны в уже упоминавшемся фундаментальном труде А.Т. Болотова [9]. Он, в частности, писал: «... но в том сумневаться не можно, что она по примеру других состоит из частичек и что частичкам сим надобно быть чрезвычайной и непостижимой для нас мализны, причем эти частички способны к движению, которое происходит с непостижимой скоростью». Затем А.Т. Болотов задает вопрос: «А какой они – эти частички – фигуры, то есть формы», и отвечает, что по их действию и способности к быстрому передвижению «... догадываться только можем, что надлежит им быть только круглыми». Примечательно, что в этом произведении мы не находим стандартных упоминаний об электрической жидкости – ведь с этого начинали изложение сути электрических явлений почти все физики того времени. Отметим, кстати, что А.Т. Болотов подчеркивает, что одна и та же электрическая материя есть повсюду – и в атмосфере, и в недрах земли, и во всех телах, но не везде она находится в равных количествах и поэтому по-разному себя проявляет.

Большой вклад в изучение электрических явлений, в особенности атмосферного электричества, был сделан известным американским ученым и общественным деятелем Бенджамином Франклином (1706 – 1790 гг.) [12]. Им были произведены (1747 – 1752 гг.) многочисленные опыты по улавливанию и изучению атмосферного электричества, усовершенствован молниеотвод, разработана так называемая «унитарная» теория электричества (1747 г.). Б. Франклин высказал правильные предположения о материальном характере электричества, считая, что оно представляет собой элемент, состоящий из чрезвычайно тонких частиц. Ему удалось подойти к представлению об «электризации через влияние», т.е. к явлению электростатической индукции. Он впервые (1749 г.) экспериментально доказал электрическую природу молнии и ее тождество с уже известными свойствами «электрической жидкости». Знаменитый опыт Б. Франклина с воздушным (электрическим) змеем убедительно показал возможность «извлечения» электричества из облаков, которым он заряжал лейденскую банку подобно тому, как это осуществлялось посредством электростатической машины. Предполагается, что им впервые были введены такие термины, как «батарея», «заряд», «разряд»; он первым соорудил батарею из лейденских банок.

Среди ученых рассматриваемого периода, занимавшихся изучением электрических явлений, следует отметить чешского естествоиспытателя Прокопа Дивиша (1698 – 1765 гг.). Он соорудил большую электростатическую машину, предложил несколько типов молниеотводов, изучал влияние электрических разрядов на рост посевов различных культур.

 

1.2 Начало экспериментальных исследований электричества и магнетизма

 

В XVI–XVII вв. в Европе все большее распространение получает экспериментальный метод научных исследований, одним из основоположников которого по праву называют Леонардо да Винчи (1452 – 1519 гг.). Изобретения и открытия этого «титана эпохи Возрождения» поражают своей глубиной и разносторонностью. Он был не только искуснейшим всадником, фехтовальщиком, поэтом, музыкантом, но и конструктором разнообразных машин и приборов, гениальным художником, математиком, астрономом, геологом, ботаником, анатомом, военным инженером, мыслителем-мате-риалистом.

Его записные книжки, эскизы различных машин и механизмов насчитывают более 7 тыс. листов. Очень важно отметить, что он сумел сделать поразительный рывок в будущие века и оставил чертежи и эскизы не только летательных аппаратов и цилиндра паровой машины с поршнем, но и предсказал волновую природу света и магнетизма, что было подтверждено учеными спустя лишь около 400 лет. В одной из его записных книжек можно найти знаменательные слова: «Не слушай учения тех мыслителей, доводы которых не подтверждены опытом».

Экспериментальный метод исследований нанес заметный удар по мистицизму и разного рода вымыслам и предрассудкам.

Значительный перелом в представлениях об электрических и магнитных явлениях наступил в самом начале XVII в., когда вышел в свет фундаментальный научный труд видного английского ученого (врача английской королевы Елизаветы) Вильяма Гильберта (1554 – 1603 гг.) «О магните, магнитных телах и о большом магните – Земле» (1600г.). Будучи последователем экспериментального метода в естествознании, В. Гильберт провел более 600 искусных опытов, открывших, как он писал, тайны «скрытых причин различных явлений» [11].

В отличие от многих своих предшественников В. Гильберт считал, что магнитная стрелка движется под влиянием магнетизма Земли, которая является большим магнитом. Свои выводы он основывал на оригинальном эксперименте, впервые им осуществленном. Он изготовил из магнитного железняка небольшой шар – «маленькую Землю – тереллу» и доказал, что магнитная стрелка принимает по отношению к поверхности этой «тереллы» такие же положения, какие она принимает в поле земного магнетизма. Он установил возможность намагничивания железа посредством земного магнетизма.

Исследуя магнетизм, В. Гильберт занялся также и изучением электрических явлений. Он доказал, что электрическими свойствами обладает не только янтарь, но и многие другие тела: алмаз, сера, смола, горный хрусталь - электризующиеся при их натирании. Эти тела он назвал «электрическими» в соответствии с греческим названием янтаря (электрон). Но В. Гильберт безуспешно пытался наэлектризовать металлы, не изолируя их, и поэтому пришел к ошибочному выводу о невозможности электризации металлов трением. Это заключение В. Гильберта было убедительно опровергнуто спустя два столетия выдающимся русским электротехником академиком Василием Владимировичем Петровым [11].

В. Гильберт правильно установил, что «степень электрической силы» бывает различна, и влага снижает электризацию тел при натирании.

Сравнивая магнитные и электрические явления, В. Гильберт утверждал, что они имеют разную природу: например, «электрическая сила» происходит только от трения, тогда как магнитная постоянно воздействует на железо; магнит поднимает тела значительной тяжести, электричество – только легкие тела. Этот ошибочный вывод В. Гильберта продержался в науке более 200 лет.

Представления о том, что электрические явления обусловлены присутствием особой «электрической жидкости», аналогичной «теплотвору» и «светотвору», были характерны для науки того периода, когда механические взгляды на многие явления природы были господствующими.

Фундаментальный труд В. Гильберта выдержал в течение XVII в. нескольких изданий, он был настольной книгой многих естествоиспытателей в разных странах Европы и сыграл огромную роль в развитии учения об электричестве и магнетизме. Великий Г. Галилей писал о сочинениях В. Гильберта: «Я воздаю величайшую похвалу и завидую этому автору».

 

1.3 Открытие новых свойств электричества

 

Одним из первых, кто, познакомившись с книгой В. Гильберта, решил получить более сильные проявления электрических сил, был известный изобретатель воздушного насоса и опыта с полушариями магдебургский бургомистр Отто фон Герике (1602 – 1686 гг.). В 1650 г. он изготовил шар из серы размером с детскую голову, насадил его на железную ось, укрепленную на деревянном штативе. При помощи ручки шар мог вращаться и натирался ладонями рук или куском сукна, прижимаемого к шару рукой. Это была первая простейшая электростатическая машина. О. Герике удалось заметить слабое свечение электризуемого шара в темноте и, что особенно важно, впервые обнаружить, что пушинки, притягиваемые шаром, через некоторое время отталкиваются от него – это явление ни О. Герике, ни многие его современники долго не могли объяснить. Немецкий ученый Г.В. Лейбниц (1646-1716 гг.), пользуясь машиной О. Герике, наблюдал электрическую искру - это первое упоминание об этом загадочном явлении.

В течение первой половины XVII в. электростатическая машина претерпела ряд усовершенствований: серный шар был заменен стеклянным (так как стекло более интенсивно электризовалось), а позднее вместо шаров или цилиндров (которые труднее было изготовить, и при нагревании они нередко взрывались) стали применять стеклянные диски. Для натирания использовались кожаные подушечки, прижимаемые к стеклу пружинками; позднее для усиления электризации подушечки стали покрывать амальгамой (рисунок 4).

Важным новым элементом конструкции машины стал кондуктор (1744 г.) – металлическая трубка, подвешенная на шелковых нитях, а позднее устанавливаемая на изолированных опорах. Кондуктор служил резервуаром для Сбора электрических зарядов, образованных при трении. После изобретения лейденской банки ее также устанавливали рядом с машиной. В 60-х годах XVIII в. электростатическая машина приобрела основные современные черты.

Рисунок 4. Электростатическая машина Герике

 

Заметные успехи в изучении электрических и магнитных явлений привели к открытию ранее неизвестных фактов: обнаружению двух родов электричества и установлению законов их взаимодействия; установлению «быстроты передачи электричества»; созданию новых электрических приборов, позволявших получать и накапливать электричество в больших количествах; изучению явлений атмосферного электричества; разработке первых теорий электрических явлений.

Значительным шагом в изучении свойств электрических зарядов были исследования члена английского Королевского общества Стефана Грея (1670–1736 гг.) и члена Парижской академии наук Шарля Франсуа Дюфе (1698–1736 гг.).

В результате многочисленных экспериментов С. Грею удалось установить, что электрическая способность стеклянной трубки притягивать легкие тела может быть передана другим телам, и он показал (1729 г.), что тела в зависимости от их отношения к электричеству можно разделить на две группы: проводники (например, металлическая нить, проволока) и непроводники (например, шелковая нить).

Продолжая опыты С. Грея, Ш.Ф. Дюфе (в 1733 г.) обнаружил два рода электрических зарядов – «стеклянные» и «смоляные» и их особенность отталкивать одноименные и притягивать противоположные заряды. Дюфе также создал прототип электроскопа в виде двух подвешенных и расходящихся при их электризации нитей.

После того как было установлено разделение тел на проводники и непроводники, а опыты с электростатическими машинами получили широчайшее распространение, совершенно естественной была попытка «накопить» электрические заряды в каком-то стеклянном сосуде, который мог их сохранить.

 

 

Рисунок 5. Опыт Мюсхеибрука (со старинной гравюры)

 

Среди многих физиков, занявшихся подобными экспериментами, наибольшую известность получил голландский профессор из г. Лейдена Питер Мюсхенбрук (Мушенбрук) (1692–1761 гг.).

Зная, что стекло не проводит электричества, он (в 1745 г.) взял в правую руку стеклянную банку (колбу), наполненную водой (которая являлась проводником), опустил в нее медную проволоку, висевшую на кондукторе электростатической машины, и попросил своего помощника вращать шар машины (рисунок 5). При этом он правильно предположил, что заряды, поступавшие с кондуктора, будут накапливаться в стеклянной банке. После того как, по его мнению, в банке накопилось достаточное количество зарядов, он решил левой рукой отсоединить медную проволоку. При этом он ощутил сильный удар, ему показалось, что «пришел конец». Он писал, что этот «новый страшный опыт советую самим никак не повторять» и что ради короны Франции он не согласится подвергнуться «столь ужасному сотрясению».

Так была изобретена лейденская банка (по названию г. Лейдена), а вскоре и первый простейший конденсатор – одно из распространенейших электротехнических устройств. Опыт П. Мюсхенбрука произвел подлинную сенсацию не только среди физиков, но и среди многих любителей, интересовавшихся электрическими опытами. Уже в 1746–1747 гг. были разработаны первые теории лейденской банки.

 

Рисунок 6. Электростатическая машина Болотова

 

Одним из важнейших последствий изобретения лейденской банки явилось установление влияния электрических разрядов на организм человека, что привело к зарождению электромедицины – это было первое сравнительно широкое практическое применение электричества, сыгравшее большую роль в углублении изучения электрических явлений. Одним из пионеров в области электромедицины был известный русский ученый-энциклопедист Андрей Тимофеевич Болотов (1738–1833 гг.). В его сочинении [10] подробно описаны многочисленные опыты по лечению «разных болезней» с помощью созданной им оригинальной и простой электрической машины с лейденской банкой (рисунок 6) и разнообразных инструментов. Им также были изобретены компактные складные и дорожные машины с диаметром стеклянного шара 20 см. В созданной им первой в России стационарной электролечебнице была оказана помощь тысячам больных. А.Т. Болотовым был написан «Краткий электрический лечебник» (1793 г.) и «История моего электризования и врачевания разных болезней оным» в трех томах (1792 г.).

Опыт П. Мюсхенбрука был повторен в присутствии короля французским аббатом Нолле (1700–1770 гг.); он образовал цепь из 180 гвардейцев, взявшихся за руки, причем первый держал банку в руке, а последний прикасался к проволоке, извлекая искру. Удар почувствовался всеми в один момент. От этой цепи солдат и произошел термин «электрическая цепь».

Постепенно конструкция лейденской банки совершенствовалась: воду заменили дробью, а затем наружная поверхность покрывалась тонкими свинцовыми пластинами, а позднее внутреннюю и наружную поверхности стали покрывать оловянной фольгой, и банка приобрела современный вид.

При проведении исследований с банкой было установлено (в 1746 г. англичанином Б. Вильсоном), что количество электричества, собираемое в банке, пропорционально толщине обкладок и обратно пропорционально толщине изоляционного слоя. В 70-х годах XVIII в. металлические пластины стали разделять не стеклом, а воздушным промежутком. Так появился простейший конденсатор.

Электростатические машины и лейденские банки использовались медиками в разных странах Европы. Как уже отмечалось, значительный вклад в электромедицину был сделан В.В. Петровым, который использовал для этих целей не только электростатические машины, но как это будет показано в следующей главе, и электрохимические источники, в частности созданную им «огромную наипаче» гальваническую батарею [5, 11].

Успехи в области исследования электростатических явлений и их практического применения, достигнутые к концу XVIII столетия, подготовили почву для открытия новых, ранее не известных явлений, создания источников постоянного электрического тока и изучения его свойств. Все это привело к становлению и последующему бурному развитию электротехники.

 

1.4 Первые наблюдения магнитных и электрических явлений

 

Первые наблюдения магнитных и электрических явлений относятся к глубокой древности. О таинственных способностях магнита притягивать железные предметы упоминается в старинных летописях и легендах, дошедших до нас из Азии (Индии и Китая), Древней Греции и Рима.

Очень образное объяснение свойств магнита дано в знаменитой поэме «О природе вещей» римского поэта Лукреция (99–55 гг. до н.э.), написанной более 2 тыс. лет назад.

Из древних сказаний и летописей, относящихся ко второму тысячелетию до н.э., мы узнаем о многих интересных фактах практического использования магнита. Древние индийцы использовали магнит для извлечения железных наконечников стрел из тел раненых воинов. В китайских летописях рассказывается о волшебных магнитных воротах, сквозь которые не мог пройти человек, спрятавший металлическое оружие. При раскопках городища ольмеков (Центральная Америка) найдены скульптуры трехтысячелетней давности, высеченные из магнитных глыб.

Происхождение слова «магнит» древние ученые объясняют по-разному. По утверждению древнегреческого философа Платона (427—347 гг. до н.э.) слово «магнит» происходит от названия древнегреческой провинции Магнезии, жителей которой называли «магнетами», а камни из Магнезии — магнитами. А известный римский писатель и ученый Плиний (29—73 гг. до н.э.) в своей 37-томной «Естественной истории» ссылается на легенду о пастухе Магнесе, пасшем стада у подножия горы на о. Крите, близ которой были разбросаны загадочные черные камни, притягивавшие железные гвозди его сандалий и железный наконечник посоха. В честь Магнеса эти камни будто бы назвали магнитами, а само явление притяжения — магнетизмом.

В Китае во втором тысячелетии до н.э. уже применялись первые компасы разных конструкций. В одном из музеев хранится китайский компас тысячелетней давности, напоминающий ложку.

Небезынтересно заметить, что в XIII–XIV вв. капитаны-католики пользовались компасом тайно, опасаясь попасть на костер инквизиции, которая видела в компасе дьявольский инструмент, созданный колдунами.

Довольно широкое распространение получили легенды о мистических способностях магнитной стрелки передавать сообщения на расстоянии. Об этом выразительно рассказывает Галилео Галилей (1564–1643 гг.). Один «изобретатель» предложил ему продать «симпатическую» магнитную стрелку, посредством которой можно поддерживать связь с человеком, находящимся за 2–3 тыс. миль. «Когда я сказал, – писал Г. Галилей, – что согласен приобрести секрет, но хрчу сначала испытать его на деле; причем для меня совершенно достаточно, если испытание будет произведено так, что я буду находиться в одной из комнат моего дома, а он в другой, изобретатель сказал, что на таком малом расстоянии я не смогу видеть действие его изобретения. На этом я с ним и расстался, заявив, что не чувствую никакого желания ехать в Каир или Московию для того, чтобы производить опыт, но, что если он сам пожелает туда отправиться, я согласен быть другой стороной, оставшись в Венеции».

Естественно, что древние ученые и естествоиспытатели задумывались над причиной загадочных свойств магнита. Платон, например, объяснял их божественным происхождением.

С именем одного из древних мудрецов – Фалеса (640–550 гг. до н.э.) связаны дошедшие до нас предания о свойстве натертого янтаря притягивать легкие тела. По его мнению, в янтаре, как и в магните, имеется душа, являющаяся первопричиной притяжения (рисунок 7).

Рисунок 7. Китайский компас

 

Изделия из янтаря, блестящие и красивые, широко использовались древними людьми для украшения, поэтому вполне вероятно, что многие могли заметить, что натертый янтарь притягивает легкие соломинки, кусочки тканей.

Греки называли янтарь «электрон». От этого спустя много веков и произошло слово «электричество». Известно, что в одном из древнегреческих сочинений описывался камень (по-видимому, драгоценный), который, подобно янтарю, электризовался при трении. Но об электризации других тел древние греки, вероятно, не знали.

И еще одно любопытное явление не осталось незамеченным древними народами, жившими на побережье Средиземного моря и в бассейне р. Нила. Речь идет об «электрических» рыбах – скате и соме. Греки их называли «наркэ», что означает «парализующий». При соприкосновении с этими рыбами, имеющими электрические органы, человек испытывал сильные удары. Известно, что в I веке н.э. римские врачи использовали электрический скат для лечения подагры, головной боли и других болезней.

И, конечно, древние народы наблюдали грозные раскаты грома и яркие вспышки молний, внушавшие им естественный страх, но ни одному из мудрецов тех времен не могла прийти в голову мысль о том, что и притяжения натертого янтаря, и удары электрических рыб, и явления грозы в атмосфере имеют одну и ту же природу.

Упадок античной культуры заметно отразился и на изучении электрических и магнитных явлений. Из многочисленных источников следует, что практически до 1600 г. не было сделано не одного открытия в области электрических явлений, а в области магнетизма лишь описаны способы использования мореплавателями компаса (арабами в IX, а европейцами в XI в.).

В XIII в. ученым удалось установить ряд свойств магнита: существование разноименных полюсов и их взаимодействие; распространение магнитного действия через различные тела (бумагу, дерево и др.); были описаны способы изготовления магнитных стрелок, а французский ученый Пьер Перегрин (1541–1616 гг.) впервые снабдил компас градуированной шкалой.

В течение многих веков магнитные явления объясняли действием особой магнитной жидкости, и как это будет показано далее, лишь выдающийся французский физик А.М. Ампер в 20-х годах XIX в. впервые объяснил электрическую природу магнетизма.

 

1.5 Установление сходства и подобия между электрическими и магнитными явлениями

 

Постепенно электрические эксперименты перестают быть модными развлечениями и все более превращаются в мощное средство познания неизведанных тайн природы.

Мировую известность приобрел трактат петербургского академика Франца Ульриха Теодора Эпинуса (1724–1802 гг.) «Опыт теории электричества и магнетизма», изданный в Петербурге в 1759 г. [10]. Ф. Эпинус впервые указал на связь между электрическими и магнитными явлениями. К этому выводу он пришел в результате многочисленных экспериментов с электризацией кристаллов турмалина при их нагревании и охлаждении (1752 г.). Это явление позднее получило название пироэлектричества. Образование разноименных зарядов на противоположных сторонах кристаллов он уподоблял двум противоположным полюсам магнита. В своей речи на общем собрании Академии наук в 1758 г. Ф. Эпинус говорил «не только о некоем союзе и сходстве магнитной и электрической силы, но и сокровенном обеих сил точном подобии» и, будто испугавшись дерзости своих мыслей о «подобии» этих различных – по утверждениям многих его современников – явлений, он в конце речи добавил: «Но я таким образом заключать не отважусь». И не удивительно, прошло почти три четверти столетия, пока «сходство и подобие» электрических и магнитных явлений было убедительно доказано М. Фарадеем.

Независимо от Ф. Эпинуса итальянский ученый Джамбаттиста Беккария (1716–1781.гг.) в 1758 г. выдвинул гипотезу о существовании тесной связи между «циркуляцией электрического флюида и магнетизмом».

Ф. Эпинусу принадлежит открытие явления электростатической индукции; он впервые отверг утверждение Б. Франклина об особой роли стекла в лейденской банке и применил плоский конденсатор с воздушной прослойкой. Он правильно утверждал, что чем меньше расстояние между обкладками банки и чем больше их поверхность, тем выше «степень электричества».

Предполагая, что «сила электрического потрясения» зависит главным образом от степени «сгущения электрической жидкости», Ф. Эпинус близко подошел к понятиям о потенциале и емкости. Ф. Эпинусом были поставлены эксперименты, воспроизводящие явления, имеющие место в приборе, названном позднее «электрофором». Изобретение электрофора обычно приписывают А. Вольта, но сам А. Вольта отмечал, что Ф. Эпинус осуществил на практике идею электрофора, «хотя и не сконструировал законченного лабораторного прибора».

В своем сочинении Ф. Эпинус предложил теорию электрических и магнитных явлений, которая основывалась на существовании электрической и магнитной жидкостей. Заслуживает внимания его попытка впервые применить математические расчеты для характеристики взаимодействия заряженных тел. При этом он задолго до Кулона высказал предположение о том, что силы взаимодействия электрических и магнитных зарядов изменяются обратно пропорционально квадратам расстояния между ними. Ф. Эпинусом также была высказана правильная мысль о сохранении количества электричества: для увеличения «количества электрической материи» в одном теле ее «неизбежно нужно взять вне его и, следовательно, уменьшить ее в каком-либо другом теле».

Говоря о возникновении понятий «потенциал» («напряжение») и «емкость», необходимо отметить большой вклад выдающегося итальянского физика Алессандро Вольта (1745–1827 гг.) [11]. Его по праву можно назвать основателем электрической метрологии. В ряде своих работ (1778–1782 гг.) он четко формулирует количественные зависимости между электрическим зарядом, емкостью и напряжением. «Когда емкость больше, то данное количество электричества вызывает меньшее напряжение... емкость и электрическое действие, или напряжение, находятся в обратном отношении». Причем под термином «напряжение» он понимает интенсивность «или усилие, производимое каждой точкой наэлектризованного тела». А. Вольта создал более совершенные электрофоры и электроскопы, в частности конденсаторный электроскоп.

Среди ряда теорий электричества, разработанных в XVIII в., заслуживает внимания теория петербургского академика Леонарда Эйлера (1707–1783 гг.) – одного из выдающихся ученых своего времени. Подобно М.В. Ломоносову Л. Эйлер отрицал существование особой электрической материи и считал, что электрические явления обусловлены разрежением и сгущением эфира. Эта теория является дальнейшим развитием идей М.В. Ломоносова и приближается к эфирным теориям электричества XIX в. Л. Эйлером описана также и одна из конструкций электростатической машины (1761 г.), от которой заряжалась лейденская банка.

Углубление исследований в области статического электричества не могло не привести к опровержению ряда ошибочных выводов, сделанных физиками в начальный период изучения явления электричества. Одним из таких ошибочных выводов было, как уже отмечалось, утверждение о невозможности электризации металлов трением.

В конце XVIII в. ряд европейских ученых, а также В.В. Петров приходят к заключению о том, что металлы могут быть наэлектризованы посредством трения при условии их тщательной изоляции. Наиболее убедительно это было доказано В.В. Петровым в его труде, изданном в 1804 г. [4, 10]. Он показал, что особенно эффективным способом электризации металлов является «стегание» их выделанным мехом некоторых животных; он разработал ряд новых методов электризации различных тел, а также установил влияние влажности окружающего воздуха на интенсивность электризации. Эти выводы В.В. Петрова, а также его указание на неустойчивость явления электризации тел подтверждены современными исследованиями.

Заслуживает внимания утверждение В.В. Петрова о возможности электризации человеческого тела посредством «стегания». Это позволяло врачам (он подчеркивает это в своем труде) применять электролечение без установки электростатической машины, которую не всякий медик мог иметь в своем распоряжении.

Результаты опытов по электризации тканей, осуществленных В.В. Петровым, привели его к созданию электрофора оригинальной конструкции, в котором основание из смолы было заменено тщательно просушенной «мягкой байкой», сложенной в четыре слоя. Ученый провел целую серию новых экспериментов по электризации ртути и других веществ посредством трясения их в стеклянных сосудах.

В.В. Петров специально изучал явления статического электричества в разреженном воздухе и атмосфере различных газов. С этой целью он построил совершенно оригинальную электростатическую машину (рисунок 8), помещавшуюся под колоколом воздушного насоса. Установленный там же термометр позволял исследовать электрические разряды при разных температурах.

В частности, В.В. Петров убедительно подтвердил возрастание электрической проводимости воздуха при его нагревании; обнаружил образование оксидов азота при электрических разрядах в воздухе.

В последней четверти XVIII в. начинает все более проявляться новый образ мышления ученых, исследующих электрические и магнитные явления. Сделанные еще в 40–50-х годах М.В. Ломоносовым и Г.В. Рихманом первые шаги от качественных наблюдений к установлению количественных закономерностей вызывают все больший интерес. Возможность перехода к количественным исследованиям обусловливалась как успехами математики, так и совершенствованием измерительных устройств.

 

Рисунок 8. Электростатическая машина Петрова

 

Как уже отмечалось, Ф. Эпинус пытался аналитически определить силу взаимодействия электрических зарядов. Вслед за ним английский ученый Генри Кавендиш (1731–1810 гг.) в своей статье (1771 г.) указывал на то, что притяжение двух электрических зарядов обратно пропорционально расстоянию в степени меньше третьей. В 1766 г. англичанин Т. Лейн изобрел новый тип электрометра, представлявшего собой разрядник с градуированием расстояния между электродами. С помощью такого электрометра можно было по расстоянию, при котором происходил пробой, определять напряжение электростатической машины. Известны также попытки физиков найти закон магнитного действия.

Важнейшим шагом в развитии количественных исследований электрических и магнитных явлений было установление закона о силе взаимодействия между наэлектризованными телами и магнитными полюсами. Этими вопросами занимались многие ученые (Ф. Эпинус, Г. Кавендиш и др.), высказавшие предположение о «законе обратных квадратов».

Но наибольших успехов сумел достичь французский военный инженер Шарль Огюстен Кулон (1736–1806 гг.). В течение нескольких лет он проводил эксперименты с помощью прибора, который вначале был предназначен для изучения законов закручивания шелковых и волосяных нитей, а также металлических проволок. В 1785 г. Ш. Кулон установил, что «сила кручения пропорциональна углу закручивания». Он решил использовать этот прибор для измерения «малых электрических и магнитных сил». Прибор позволял измерять «мельчайшие степени силы», и Ш. Кулон назвал его «крутильными весами».

В результате многочисленных экспериментов он установил, что сила взаимодействия наэлектризованных тел пропорциональна «количеству электричества» (этот термин был им впервые введен в науку) заряженных тел и обратно пропорциональна квадрату расстояния между ними. При этом в любой точке поверхности сила направлена перпендикулярно к этой поверхности. Так был открыт Ш. Кулоном знаменитый закон, носящий его имя. Этот закон Ш. Кулон распространил и на взаимодействие магнитных полюсов.

Ш. Кулон аналитически и экспериментально доказал, что электричество распространяется по поверхности проводника, а также равномерно распределяется по поверхности изолированной проводящей сферы. Исследования Ш. Кулона способствовали применению математического анализа в теории электричества и магнетизма, распространению математического понятия потенциала (ранее введенного в механику) на электрическое и магнитное поля.

 

 


Контрольные вопросы

1. Изобретения Ломоносова М.В., связанные с электрическими явлениями.

2. Какой вклад в изучение электрических явлений, в особенности атмосферного электричества, был сделан известным американским ученым и общественным деятелем Бенджамином Франклином?

3. Кто положил начало экспериментальных исследований электричества и магнетизма?

4. Изобретения Отто фон Герике.

5. Опыт Мюсхеибрука.

6. Какую роль для человека сыграло изобретение лейденской банки?

7. Первые наблюдения магнитных и электрических явлений?

8. Что такое явление пироэлектричества?

9. Кто открыл явление электростатической индукции?

10. Изобретения Петрова В.В.

11. Как был открыт закон Кулона?

 


 

 

2 Зарождение электротехники

 

2.1 Этапы развития электротехники

 

Электрические и магнитные явления наблюдались еще в глубокой древности. История светотехники насчитывает немногим более полутора столетий. Её начало относят к моменту создания первого электрохимического генератора в 1800 г. До этого были сделаны только первые шаги по созданию простейших электростатических машин и приборов и установлению некоторых закономерностей в области статического электричества и магнетизма.

С 1800 по 1830 г. происходило изучение действий электрического тока, был установлен ряд закономерностей в области электромагнетизма, а также проведены первые опыты по практическому применению электричества. В это время разрабатываются основы электродинамики, закладывается фундамент электротехники. Эти годы считают первым этапом развития электротехники.

Второй этап развития электротехники (1831–1870) начался с открытия электромагнитной индукции, а завершился созданием первого промышленного электрического генератора.

Третий этап (1870–1891) ознаменовался внедрением в промышленность электромашинного генератора постоянного тока и завершением исследований в области многофазных систем. Это период интенсивного развития электротехники в условиях децентрализованного производства электроэнергии и начального развития электростанций. В это время начинается становление электротехники как самостоятельной отрасли.

Решение проблемы передачи электроэнергии на расстояние, разработка промышленных типов трансформатора и асинхронного двигателя создали предпосылки для широкого развития электрификации. С этого времени начинается четвертый этап в развитии электротехники, продолжающийся до нашего времени.

Остановимся кратко на важнейших открытиях, способствовавших становлению электростатики. Первые наблюдения электрических и магнитных явлений относятся к VI–VII вв. до нашей эры. В течение многих веков представления о сущности этих явлений были весьма примитивными. Несмотря на это, магнит нашел практическое применение еще до нашей эры в странах древнейших культур – Китае и Индии. Первое научное сочинение в этой области принадлежит У. Гильберту, опубликовавшему в 1600 г. научную работу «О магните, магнитных телах и о большом магните – Земле». Гильберт ввел в науку термин «электричество», назвав «электрическими» тела, способные электризоваться. Дальнейшее изучение электрических явлений привело к созданию разнообразных электрических машин и приборов. Были разработаны первая электростатическая машина, лейденская банка (конденсатор), электроизмерительный прибор Ломоносова (получив одноименный заряд, витки пружины стремятся оттолкнуться, увлекая за собой пластинку с закрепленным на ней стержнем; степень опускания стержня фиксировалась с помощью «усов»), электрический указатель Г. В. Рихмана (первый прибор непосредственной оценки) и крутильные весы Ш. О. Кулона (один из наиболее точных приборов своего времени, позволивший Кулону в 1785 г. установить закон взаимодействия электрических зарядов и магнитных полюсов). Создание первых электроизмерительных приборов положило начало установлению количественных закономерностей в области электромагнитных явлений. Большое значение имели работы, выявившие электрическую природу грозовых явлений в атмосфере, а также разработка теорий электричества (М. В. Ломоносов, Б. Франклин) и создание разнообразных молниеотводов (М. В. Ломоносов, Б. Франклин, П. Дивиш).

Для практики наиболее удачными оказались опыты по использованию электричества в медицинских целях. В многочисленных трудах конца XVIII – начала XIX в. описывались разнообразные электростатические машины и приборы, предназначенные для электролечения. Эти работы немало способствовали расширению знаний в области электричества, установлению влияния электрических разрядов на организм животных и человека, выявлению электроизоляционных свойств стекла, сургуча, смолы, хлопчатобумажных тканей, шелка.

Представляют большой интерес труды русского ученого А. Т. Болотова. Им была создана своеобразная электролечебница, в которой устанавливались простые и «особливо маленькие, складные дорожки» электростатические машины, производившие, однако, «изрядное действие». Свой опыт он обобщил в книге «Краткие и на опытности основанные замечания об электрицизме и способности электрических махин к помоганию от разных болезней», изданной в Петербурге в 1803 г.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.