Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Уравнение прямой, проходящей через две заданные несовпадающие точки






Уравнение прямой, проходящей через две заданные несовпадающие точки и

или

или в общем виде

Неполные уравнения прямой. Совместное исследование уравнение двух и трех прямых. Уравнение прямой " в отрезках"

Если в общем уравнении прямой (1)

один или два из трех коэффициентов (считая и свободный член) обращаются в нуль, то уравнение называется неполным. Возможны следующие случаи:

1). С=0; уравнение имеет вид и определяет прямую, проходящую через начало координат.

2). В=0 (А 0); уравнение имеет вид и определяет прямую, перпендикулярную к оси Ох. Это уравнение может быть записано в виде х=а, где является величиной отрезка, который отсекает прямая на оси Ох, считая от начала координат.

3). В=0, С=0 (А 0); уравнение может быть записано в виде х=0 и определяет ось ординат.

4). А=0 (В 0); уравнение имеет вид и определяет прямую, перпендикулярную к оси Оу. Это уравнение может быть записано в виде y=b, где является величиной отрезка, который отсекает прямая на оси Оу, считая от начала координат.

5). А=0, С=0 (В 0); уравнение может быть записано в виде у=0 и определяет ось абсцисс.

Если ни один из коэффициентов уравнения (1) не равен нулю, то его можно преобразовать к виду , (2)

где , суть величины отрезков, которые отсекает прямая на координатных осях.

Уравнение (2) называется уравнением прямой «в отрезках».

Если две прямые даны уравнениями

и ,

то могут представиться три случая:

а). - прямые имеют одну общую точку;

б). - прямые параллельны;

в). - прямые сливаются, то есть оба уравнения определяют одну и ту же прямую.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.