Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Стали качественные и высококачественные




Эти стали характеризуются более низким, чем у сталей обыкновенного качества, содержанием вредных примесей (0,03 S и P). Они поставляются в виде проката. Поковок др. полуфабрикатов с гарантированным хим. составом и мех. св-вами. Маркируются двухзначными числами 05, 08, 10, 15, 20,…,85, обозначающими среднее содержание углерода в сотых долях % (ГОСТ 1050-88). Спокойные стали маркируются без индекса, полуспокойные – пс, кипящие – кп. Если сталь высококач-венная, то в конце ставится буква А (Сталь45А). Содержание S и P не более 0,02%. Кач-венные стали находят многостороннее применение в технике, т.к. в зав-ти от содерж. С и термической обработки обладают разнообразными мех. и технологич. св-вами. Стали 05, 08, 10 – малопрочные, высокопластичные, их прим. для холодной штамповки различных изделий. Без т/о в горячекатаном состоянии их используют для шайб, прокладок, кожухов и т.д. Стали 15, 20, 25 – цементуемые, для деталей небольшого размера: кулачки, толкатели, малонагруженные шестерни.

 

5.Трубы из чугуна

 

6. Ручная сварка стержневыми плавящимися электродами

При ручной дуговой сварке плавящимся электродом сварка производится металлическим электродным стержнем, на поверхность которого путем окунания в жидкую массу или путем опрессовки под давлением наносится специальное электродное покрытие определенного состава и толщины. Электродный стержень с нанесенным на его поверхность слоем покрытия называют электродом.

По назначению металлические электроды для ручной дуговой сварки сталей и наплавки поверхностных слоев с особыми свойствами, изготовляемые способом опрессовки, подразделяются (ГОСТ 9466—75):

-для сварки углеродистых и низколегированных сталей с временным сопротивлением разрыву до 60 кгс/мм2 (600 МПа), с условным обозначением - У;

-для сварки легированных сталей с временным сопротивлением разрыву свыше 60 кгс/мм2 (600 МПа) — Л;

-для сварки легированных теплоустойчивых сталей - Т;

-для сварки высоколегированных сталей с особыми свойствами — В;

-для наплавки поверхностных слоев с особыми свойствами — Н.

По толщине покрытия электроды подразделяются на электроды с тонким, средним, толстым и особо толстым покрытиями. ГОСТ 9466—75 предусматривает также три группы электродов — 1, 2, 3, характеризующиеся требованиями к качеству (точности) изготовления электродов, состоянием поверхности покрытия, а также содержанием серы и фосфора в наплавленном металле.

По виду покрытия электроды подразделяются:

с кислым покрытием А, с основным покрытием — Б, с целлюлозным покрытием — Ц, с рутиловым покрытием — Р, с покрытием смешанного вида — с двойным обозначением, с прочими видами покрытий — П. Электродные покрытия состоят из шлакообразующих, газообразующих, раскисляющих, легирующих, стабилизирующих и связующих (клеящих) компонентов.



В зависимости от того, в каком пространственном положении выполняется сварка, электроды подразделяются:

для сварки во всех положениях с условным обозначением 1;

для сварки во всех положениях, кроме вертикального сверху вниз,— 2; для положений нижнего, горизонтального на вертикальной плоскости и вертикального снизу вверх 3; для нижнего и нижнего «в лодочку» — 4.

Электроды подразделяются по роду и полярности тока, а также по номинальному напряжению холостого хода источника питания сварочной дуги переменного тока.

 

7.Влияние особенностей металлургического производства на повышение качества стали, внепечные методы обработки стали, прокатка.

появление и развитие методов внепечной обработки (вторичной, или ковшовой, металлур­гии).Многие технологические опера­ции, проводимые с целью уменьше­ния содержания вредных примесей в металле и повышения его качества, можно выполнять не в плавильном аг­регате, а в ковше (или в ином агрегате, заменяющем ковш), специально обо­рудованном устройствами для соот­ветствующей обработки жидкого ме­талла. Производительность плавиль­ного агрегата при этом возрастает, и одновременно обеспечивается повы­шение качества стали. С целью очи­щения от вредных примесей, усред­нения состава и регулирования его температуры металл в ковше подвер­гают вакуумированию, продувают инертными газами, обрабатывают жидкими или порошкообразными смесями или специальной лигатурой, подвергают электромагнитному пере­мешиванию и т. п.

Поскольку эти операции в отдель­ных случаях весьма продолжительны, а металл постепенно охлаждается и за­стывает, появились устройства для по­догрева металла в процессе его обра­ботки, т. е. ковш превратился в от­дельный, иногда довольно сложный агрегат, а методы получили название ковшовой (или вторичной) металлур­гии, внепечной обработки или вне-печного рафинирования. Помимо по­вышения качества внепечная обработ­ка обеспечивает стабильность (от плавки к плавке) свойств металла дан­ной марки, что очень важно для по­требителя. В результате внепечная об­работка за очень короткий срок (с конца XX в.) получила повсеместное распространение. В настоящее время сотни миллионов тонн выплавляемой в мире стали обрабатывают тем или иным способом вторичной металлур­гии.



Методы внепечной обработки стали могут быть условно разделены на простые (обработка одним способом) и комбинированные (обработка металла несколькими способами одновременно). К простым методам относятся: 1) обработка металла вакуумом; 2) продувка инертным газом; 3) обработка металла синтетическим шлаком, жидкими и твёрдыми шлаковыми смесями; 4) введение реагентов в глубь металла.

Основными недостатками перечисленных простых способов обработки металла являются: а) необходимость перегрева жидкого металла в плавильном агрегате для компенсации падения температуры металла при обработке в ковше; б) ограниченность воздействия на металл.

Прокатка — процесс пластического деформирования тел, между вращающимися приводными валками. Слова "приводными валками" означают, что энергия необходимая для осуществления деформации передается через валки, соединенные с двигателем прокатного стана. Деформируемое тело можно протягивать и через неприводные (холостые) валки, но это будет не процесс прокатки, а процесс волочения.

Проката относится к числу основных способов обработки металлов давлением. Прокаткой получают изделия (прокат) разнообразной формы и размеров. Как и любой другой способ обработки металлов давлением прокатка служит не только для получения нужной формы изделия, но и для формирования у него определенной структуры и свойств.

Продольная прокатка

Способ продольной прокатки является наиболее распространенным. При продольной прокатке полоса подводится к валкам, вращающимся в разные стороны, и втягивается в зазор между ними за счет сил трения на контактной поверхности. Полоса обжимается по высоте и принимает форму зазора (калибра) калибра между валками. При этом способе прокатки полоса перемещается только вперед, то есть совершает только поступательное движение.

Поперечная прокатка

При поперечной прокатке обрабатываемое тело (цилиндрической формы) помещается в зазор между двумя валками вращающимися в одну сторону и получает вращательное движение за счет сил трения на контактной поверхности. Деформация тела происходит при встречном сближении валков. В продольном направлении обрабатываемое тело не перемещается (если нет специальных тянущих устройств). Поперечная прокатка используется для изготовления валов, осей, втулок и других тел вращения.

Поперечно-винтовая прокатка

Поперечно-винтовая прокатка занимает промежуточное положение между продольной и поперечной. Этот способ широко используется для получения полых трубных заготовок (гильз). Обрабатываемое тело (цилиндрической формы) проходя между валками, вращается и одновременно совершает поступательное движение, то есть каждая точка тела (за исключением расположенных на его оси) движется по винтовой траектории.

 

 

8. Технология и изготовление чугунных труб.

 

 

9. Автоматическая сварка под слоем флюса

При сварке под флюсом сварочная дуга между концом электрода и изделием горит под слоем сыпучего вещества, называемого флюсом. Голая электродная проволока с катушки подается в зону дуги автоматом. Впереди автомата из бункера по трубке на изделие подается флюс, остаток которого, не использованный при сварке, пневматически отсасывается обратно в бункер по трубке. Расплавленная и затвердевшая часть образует на шве толстую шлаковую корку.

Флюс насыпается слоем толщиной 50-60 мм;

Дуга утоплена в массе флюса и горит в жидкой среде расплавленного флюса, в газовом пузыре, образуемом газами и парами, непрерывно создаваемыми дугой. При среднем насыпном весе флюса около 1,5 г/см9 статическое давление слоя флюса на жидкий металл составляет 7-9 г/см2. Этого незначительного давления, как показывает опыт, достаточно, чтобы устранить нежелательные механические воздействия дуги на ванну жидкого металла, разбрызгивание жидкого металла и нарушение формирования шва даже при очень больших токах.

В то время как при открытой дуге механическое воздействие дуги на ванну жидкого металла делает практически невозможной сварку при силе тока выше 500-600А вследствие разбрызгивания металла и нарушения правильного формирования шва, погружение дуги во флюс дало возможность увеличить применяемые токи в среднем до 1000-2000 а и максимально до 3000-4000 А. Таким образом, появилась возможность при сварке под флюсом повысить сварочный ток в 6-8 раз по сравнению с открытой дугой с сохранением высокого качества сварки и отличного формирования шва. Производительность сварки, определяемая числом метров шва за час горения дуги, при сварке под флюсом значительно выше (до 10 раз), чем при сварке открытой дугой на одинаковых сварочных токах. Таким образом, производительность сварки под флюсом возрастает как за счет увеличения сварочного тока, так и за счет лучшего его использования.

Заключение дуги в газовый пузырь со стенками из жидкого флюса практически сводит к нулю потери металла на угар и разбрызгивание, суммарная величина которых не превышает 2% веса расплавленного электродного металла. Сварные швы получаются равномерного и очень высокого качества. Отсутствие потерь на угар и разбрызгивание и уменьшение доли электродного металла в образовании шва позволяют весьма значительно экономить расход электродной проволоки. Лучшее использование тока заметно экономит расход электроэнергии. Так как дуга горит невидимо под толстым слоем флюса, не требуется защиты глаз работающих.

К недостаткам сварки под флюсом можно отнести невидимость места сварки, закрытого толстым слоем флюса, и довольно значительные расход и стоимость флюса. Невидимость места сварки повышает требования к точности подготовки и сборки изделия под сварку, затрудняет сварку швов сложной конфигурации. Расход флюса по весу в среднем равняется весу израсходованной проволоки, и стоимость его оказывает существенное влияние на общую стоимость сварки.

Применение для сварки под флюсом дуговых автоматов особых осложнений не вызывает, дуга под флюсом обычно устойчивее открытой дуги. Переход на сварку под флюсом потребовал лишь увеличения сварочных токов и соответственного увеличения размеров и усиления конструкции автоматов. Сварка под флюсом в большинстве случаев ведется на токе высоких плотностей, поэтому широко применяются автоматы с постоянной скоростью подачи электродной проволоки.

 

 

10. Основные факторы, влияющие на выбор стали. Химический состав. Влияние углерода и постоянных примесей на свойства стали.

Сталь является многокомпонентным сплавом, содержащим углерод и ряд постоянных или неизбежных примесей Мп, Si, S, Р, О, N, Н и др., которые оказывают влияние на ее свойства. Присутствие этих примесей объясняется трудностью удаления части из них при выплавке (Р, S), переходом их в сталь в процессе ее раскисления (Мп, Si) или из шихты — легированного металлического лома (Cr, Ni и др.). Эти же примеси, но в больших количествах, присутствуют и в чугунах.

Влияние углерода. Структура стали после медленного охлаждения состоит из двух фаз — феррита и цементита. Количество цементита возрастает в стали прямо пропорционально содержанию углерода.

Частицы цементита повышают сопротивление деформации, и, кроме того, они уменьшают пластичность и вязкость. Вследствие этого с увеличением в стали углерода возрастает твердость, временное сопротивление, предел текучести, уменьшаются относительное удлинение, относительное сужение и ударная вязкость.

Влияние кремния и марганца. Содержание кремния в углеродистой стали в качестве примеси обычно не превышает 0,35—0,4 %, а марганца 0,5—0,8 %. Кремний и марганец переходят в сталь в процессе ее раскисления при выплавке. Они раскисляют сталь, т. е. соединяясь с кислородом закиси железа FeO, в виде окислов переходят в шлак; раскисление улучшает свойства стали. Кремний, дегазируя металл, повышает плотность слитка.

Кремний, остающийся после раскисления в твердом растворе (в феррите), сильно повышает предел текучести. Это снижает способность стали к вытяжке и особенно холодной высадке. В связи с этим в сталях, предназначенных для холодной штамповки и холодной высадки, содержание кремния следует брать пониженным.

Влияние серы. Сера является вредной примесью в стали. С железом она образует химическое соединение FeS, которое практически нерастворимо в нем в твердом состоянии, но растворимо в жидком металле. Соединение FeS образует с железом легкоплавкую эвтектику с температурой плавления 988 °С. Эта эвтектика образуется даже при очень малых содержаниях серы. Кристаллизуясь из жидкости по окончании затвердевания, эвтектика преимущественно располагается по границам зерна. При нагревании стали до температуры прокатки или ковки (1000—1200 °С) эвтектика расплавляется, нарушается связь между зернами металла, вследствие чего при деформации стали в местах расположения эвтектики возникают надрывы и трещины. Это явление носит название красноломкости.

Сернистые включения сильно снижают механические свойства, особенно ударную вязкость и пластичность в поперечном направлении вытяжки при прокатке и ковке, а также предел выносливости. Работа зарождения трещины а3 не зависит от содержания серы, а работа развития трещины ар с увеличением содержания серы резко падает. Свариваемость и коррозионную стойкость сернистые включения ухудшают. Содержание серы в стали строго ограничивается, оно не должно превышать 0,035—0,06 %.

Влияние фосфора. Фосфор является вредной примесью, и содержание его в стали допускается не более 0,025—0,045 %.

Растворяясь в феррите, фосфор сильно искажает кристаллическую решетку, при этом увеличиваются временное сопротивление и предел текучести, а пластичность и вязкость уменьшаются. Снижение вязкости тем значительнее, чем больше в стали углерода. Фосфор повышает порог хладноломкости стали и уменьшает работу развития трещины. Сталь, содержащая фосфор на верхнем пределе, для промышленных плавок (0,045 %), имеет работу распространения трещины в 2 раза меньшую, чем сталь, содержащая менее 0,005 % Р. Каждая 0,01 % Р повышает порог хладноломкости стали на 20—25 °С.

Вредное влияние фосфора усугубляется тем, что он обладает большой склонностью к ликвации. Вследствие этого в серединных слоях слитка отдельные участки обогащаются фосфором и имеют резко пониженную вязкость. Современные методы получения стали не обеспечивают глубокого очищения металла от фосфора.

Влияние азота, кислорода и водорода. Азот и кислород присутствуют в стали в виде хрупких неметаллических включений, как твердые растворы или в свободном виде; они располагаются в дефектных участках металла (раковинах, трещинах и др.). Примеси внедрения (азот, кислород), концентрируясь в зернограничных объемах и образуя выделения нитридов и оксидов по границам зерен, повышают порог хладноломкости и понижают сопротивление хрупкому разрушению. Неметаллические включения (оксиды, нитриды, частицы шлаков и т. п.), являясь концентраторами напряжений, могут сильно понизить, если они присутствуют в значительных количествах или располагаются в виде скоплений, предел выносливости и вязкость разрушения.

Очень вредным является растворенный в стали водород, который сильно охрупчивает сталь. Поглощенный при выплавке стали водород не только охрупчивает сталь, но приводит к образованию в катаных заготовках и крупных поковках флокенов. Флокены представляют собой очень тонкие трещины овальной или округлой формы, имеющие в изломе вид пятен — хлопьев серебристого цвета. Флокены резко ухудшают свойства стали. Металл, имеющий флокены, нельзя использовать в промышленности.

Влияние водорода при сварке проявляется в образовании холодных трещин в наплавленном и основном металле.

Молибден, ванадий, вольфрам, хром повышают прочность и вязкость сталей, ухудшая их обрабатываемость. Эти элементы образуют твердые растворы с железом и карбиды различного состава и твердости, как следствие возрастает истирающая способность материала.

Хром значительно снижает теплопроводность стали.

Кобальт – наоборот повышает теплопроводность, несколько снижает прочность и вязкость стали.

Никель способствует упрочнению стали и снижает обрабатываемость резанием.

11. Алюминиевые трубы и листовой материал

Трубы из Ал. Обладают большой стойкостью чем стальные. В углеродистых средах, низкой температуры. Имеют небольшую массу.

Трубы из алюминия и его сплавов применяют в химической, пищевой и других отраслях промышленности. Они имеют небольшую плотность (92,7г/см2) и относительно высокую устойчивость против коррозии в крепкой и слабой азотной, разбавленной серной, фосфорной, уксусной и многих других кислотах при комнатной температуре. С повышением температуры химическая стойкость и прочность труб резко снижается.

Все сплавы алюминия можно разделить на деформируемые, предназначенные для получения полуфабрикатов (листов, плит, прутков и т. д.), а также поковок и штамповых заготовок путем прокатки, прессования, ковки и штамповки, и литейные, предназначенные для фасонного литья.

Сплавы алюминия, обладая хорошей технологичностью во всех стадиях передела, малой плотностью, высокой коррозийной стойкостью, при достаточной прочности, пластичности и вязкости нашли широкое применение в авиации, судостроении, строительстве и других отраслях народного хозяйства.

Алюминиевый лист - один из наиболее востребованных видовалюминиевого проката. Производится из сплавов: А5, АД1, АМг2, АМГ3, АМг5, АМЦ, Д16, Д1, 1050, 1070 и др.

Производство алюминиевого листа состоит из двух основных этапов: горячей и холодной деформации.

листового алюминия толщина, которого находится в пределах 0,3-10,5мм, длина листа алюминия — 2000-7200мм.


mylektsii.ru - Мои Лекции - 2015-2017 год. (0.088 сек.)