Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Характеристики теплового излучения






Тепловое излучение вызвано нагреванием и совершается за счет энергии теплового движения атомов и молекул вещества.

Количественной характеристикой теплового излучения является спектральная плотность энергетической светимости (излучательности) тела – мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:

,

где – энергия электромагнитного излучения, испускаемого за единицу времени с единицы площади поверхности тела (мощность излучения) в интервале частот n до n+dn.

Зная , можно вычислить интегральную энергетическую светимость (интегральную излучательность), просуммировав по всем частотам

.

Способность тел поглощать падающее на них излучение характеризуется спектральной поглощательной способностью

,

которая показывает, какая доля падающей энергии электромагнитных волн с частотами от n до n+dn за единицу времени на единицу площади поверхности тела поглощается.

Величины и зависят от природы тела, его термодинамической температуры и различаются для излучений с различными частотами.

Тело, которое поглощает полностью всю падающую на него энергию, при любой температуре называется черным ( ). Абсолютно черных тел в природе нет, но есть близкие к ним по своим свойствам: сажа, черный бархат, платиновая чернь и некоторые другие.

Вместе с понятием черного тела используется понятие серого тела – тела, поглощательная способность которого меньше единицы ( ), но одинакова для всех частот и зависит только от температуры, материала и состояния поверхности тела.

 

Теплопередача — физический процесс передачи тепловой энергии от более горячего тела к более холодному либо непосредственно (при контакте), либо через разделяющую (тела или среды) перегородку из какого-либо материала. Когда физические тела одной системы находятся при разной температуре, то происходит передача тепловой энергии, или теплопередача от одного тела к другому до наступления термодинамического равновесия. Самопроизвольная передача тепла всегда происходит от более горячего тела к более холодному, что является следствием второго закона термодинамики

Теплопрово́ дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Иногда теплопроводностью называется также количественная характеристика способности конкретного вещества проводить тепло. Численно эта характеристика равнаколичеству теплоты

, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании их температуры.

 

cуществуют следующие пути отдачи тепла организмом в окружающую среду: излучение, теплопроведение, конвекция и испарение.

Излучение — это способ отдачи тепла в окружающую среду поверхностью тела человека в виде электромагнитных волн инфракрасного диапазона (а = 5—20 мкм). Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения и разности средних значений температур кожи и окружающей среды. Площадь поверхности излучения — это суммарная площадь поверхности тех частей тела, которые соприкасаются с воздухом. При температуре окружающей среды 20 °С и относительной влажности воздуха 40—60 % организм взрослого человека рассеивает путем излучения около 40—50 % всего отдаваемого тепла. Теплоотдача путем излучения возрастает при понижении температуры окружающей среды и уменьшается при ее повышении. В условиях постоянной температуры окружающей среды излучение с поверхности тела возрастает при повышении температуры кожи и уменьшается при ее понижении. Если средние температуры поверхности кожи и окружающей среды выравниваются (разность температур становится равной нулю), отдача тепла излучением становится невозможной. Снизить теплоотдачу организма излучением можно за счет уменьшения площади поверхности излучения («сворачивания тела в клубок»). Если температура окружающей среды превышает среднюю температуру кожи, тело человека, поглощая инфракрасные лучи, излучаемые окружающими предметами, согревается.

Теплопроведение — способ отдачи тепла, имеющий место при контакте, соприкосновении тела человека с другими физическими телами. Количество тепла, отдаваемого организмом в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади контактирующих поверхностей, времени теплового контакта и теплопроводности контактирующего тела. Сухой воздух, жировая ткань характеризуются низкой теплопроводностью и являются теплоизоляторами. Использование одежды из тканей, содержащих большое число маленьких неподвижных «пузырьков» воздуха между волокнами (например, шерстяные ткани), дает возможность организму человека уменьшить рассеяние тепла путем теплопроводности. Влажный, насыщенный водяными парами воздух, вода характеризуются высокой теплопроводностью. Поэтому пребывание человека в среде с высокой влажностью при низкой температуре сопровождается усилением теплопотерь организма. Влажная одежда также теряет свои теплоизолирующие свойства.

Конвекция — способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха (воды). Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. При этом контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и более плотным воздухом. В условиях, когда температура воздуха равна 20 °С, а относительная влажность — 40—60 %, тело взрослого человека рассеивает в окружающую среду путем теплопро-ведения и конвекции около 25—30 % тепла (базисная конвекция). При увеличении скорости движения воздушных потоков (ветер, вентиляция) значительно возрастает и интенсивность теплоотдачи (форсированная конвекция).

Отдача тепла организмом путем теплопроведения, конвекции и излу чения, называемых вместе «сухой» теплоотдачей, становится неэффективной при выравнивании средних температур поверхности тела и окружающей среды

Теплоотдача путем испарения — это способ рассеяния организмом тепла в окружающую среду за счет его затраты на испарение пота или влаги с поверхности кожи и влаги со слизистых оболочек дыхательных путей («влажная» теплоотдача). У человека постоянно осуществляется выделение пота потовыми железами кожи («ощутимая», или железистая, потеря воды), увлажняются слизистые оболочки дыхательных путей («неощутимая» потеря воды) (рис. 13.4). При этом «ощутимая» потеря воды организмом оказывает более существенное влияние на общее количество отдаваемого путем испарения тепла, чем «неощутимая».

При температуре внешней среды около 20 " С испарение влаги составляет около 36 г/ч. Поскольку на испарение 1 г воды у человека затрачивается 0, 58 ккал тепловой энергии, нетрудно подсчитать, что путем испарения организм взрослого человека отдает в этих условиях в окружающую среду около 20 % всего рассеиваемого тепла. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде усиливают потоотделение и оно может возрасти до 500— 2000 г/ч. Если внешняя температура превышает среднее значение температуры кожи, то организм не может отдавать во внешнюю среду тепло излучением, конвекцией и теплопроведением. Организм в этих условиях начинает поглощать тепло извне, и единственным способом рассеяния тепла становится усиление испарения влаги с поверхности тела. Такое испарение возможно до тех пор, пока влажность воздуха окружающей среды остается меньше 100 %. При интенсивном потоотделении, высокой влажности и малой скорости движения воздуха, когда капли пота, не успевая испариться, сливаются и стекают с поверхности тела, теплоотдача путем испарения становится менее эффективной.

 

Тепловизор – устройство, посредством которого тепловое излучение объектов преобразуется в изображение, что открывает ряд уникальных возможностей для разных сфер деятельности. Любой объект, обладающий температурой, создает тепловое излучение. При этом в зависимости от температуры интенсивность излучения различных объектов неодинакова, в результате чего складывается общая картина теплового излучения объектов, которая благодаря тепловизионным приборам может быть преобразована в видимое человеческому глазу изображение.

Принцип действия современных тепловизоров основан на способности некоторых материалов фиксировать излучение в инфракрасном диапазоне. Посредством сложных микросхем и объектива, изготовленных из редких материалов (таких как германий), тепловое излучение объектов фиксируется и трансформируется в изображение на специальном дисплее, где разной температуре соответствует разный цвет изображения. Шкала распределения цветов, как правило, отображается тут же. В зависимости от модели тепловизоры различаются по величине шага измеряемой температуры. Современные технологии позволяют различать температуру объектов с точностью до 0, 05-0, 1 К.

Зако́ н Бугера — Ламберта — Бера — физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Закон выражается следующей формулой:

,

где — интенсивность входящего пучка, — толщина слоя вещества, через которое проходит свет, — показатель поглощения (не путать с безразмерным показателем поглощения , который связан с формулой , где — длина волны).

Показатель поглощения характеризует свойства вещества и зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощениявещества.

 

Линза- прозрачное для света тело, ограниченное выпуклыми и вогнутыми поверхностями.

Оптическая сила линзы- величина,, обратная фокусному расстоянию линзы.

Фокусное расстояние линзы- расстояние от линзы до точки фокуса.

Оптическая сила линзы D=1/F

Единица измерения- 1 Дптр (диоптрия). 1 Дптр=1/м.

формулой тонкой линзы (открытой Исааком Барроу):

Формула тонкой линзы связывает между собой 3 величины:

Расстояние от предмета до линзы.d

Расстояние от линзы до изображения f

Фокусное расстояние линзы F

Линзы- собирающие и рассеивающие.

Собирающие (положительные)-оптическая сила больше нуля. Фокус -действительный. Лучи света после прохождения такой линзы собираются в одной точке.

Рассеивающие Линзы- (отрицательная)-опт. Сила меньше нуля. Фокус – мнимый. В одной точке (фокусе) сходятся продолжения лучей. Рассеивающая линза при любых расстояниях от предмета до изображения даёт уменьшенное, мнимое. прямое изображение.

 

Искажение изображения, вызванное недостатками оптической системы, называется аберрацией. Аберрации оптических систем бывают физические и геометрические. Физическая аберрация – хроматическая. Геометрические аберрации – сферическая, кома, астигматизм, кривизна поля и дисторсия.

Рисунок 2.2.3.1. Хроматическая аберрация создает радужный ореол вокруг звезды

Хроматическая аберрация характерна для всех преломляющих оптических приборов. Возникает из-за того, что коэффициент преломления среды зависит от длины волны света. Синие лучи отклоняются линзой сильнее красных, и поэтому положения фокусов для лучей разных длин волн не совпадают. В результате изображение звезды выглядит как набор радужных колец.

 

Хроматическая аберрация полностью отсутствует в зеркальных системах.

 

Сферическая аберрация возникает из-за того, что лучи света, параллельные главной оптической оси объектива, падая на сферическую поверхность линзы или зеркала, после преломления или отражения пересекаются не в одной точке. Края объектива строят изображение ближе к объективу, а центральная часть – дальше. В результате изображение имеет в фокальной плоскости нерезкий вид.

В рефракторах сферическая аберрация совместно с хроматической аберрацией устраняется подбором линз. В рефлекторах зеркалу придают не сферическую, а параболическую форму. Система, в которой сферическая аберрация исправлена, называется стигматичной.

Астигматизм заключается в растягивании точечного изображения в черточку. Лучи света от объекта, идущие в разных плоскостях, не могут сфокусироваться на одной плоскости изображения. Размер астигматического изображения растет пропорционально квадрату углового расстояния звезды от центра оптической системы. Оптические системы, в которых исправлен астигматизм, называются анастигматическими.

Наконец, дисторсия связана с искажением масштабов изображения. Изображение звезды собирается в одну точку, но эта точка не совпадает с изображением звезды в идеальном телескопе. Из-за этого изображение квадрата будет иметь вид либо подушки, либо бочки. Оптические системы, свободные от дисторсии, называются ортоскопическими

 

4. Центрированная оптическая система. Кардинальные точки и главные плоскости. Построение изображения в ЦОС.

5.

Центрированные оптические системы (ЦОС).

Оптическая система, образованная сферическими отражающими и

преломляющими поверхностями, называется центрированной, если центры

кривизны всех поверхностей лежат на одной прямой. Эта прямая называется

главной оптической осью системы.

ЦОС характеризуется рядом так называемых кардинальных точек и

плоскостей, задание которых полностью описывает все свойства ЦОС и

позволяет пользоваться ими, не рассматривая реального хода лучей в

системе.

Число кардинальных точек в общем случае равно четырем. В некоторых

частных случаях их число уменьшается, например, в тонкой линзе обе

главные плоскости сливаются в одну. У телескопической системы

кардинальные точки находятся на бесконечности, и поэтому построение

изображения с их помощью невозможно.

В качестве кардинальных точек не обязательно пользоваться фокусами и

главными точками, иногда их заменяют узловыми точками. Они обладают

тем свойством, что луч, проходящий через переднюю узловую точку (К1,

рис.4) и образующий с осью ОО′ угол α, после преломления проходит через

заднюю узловую точку (К2) и образует с осью тот же угол α (в сопряженных

точках К1

и К2 угловое увеличение равно +1).

Если значения показателей преломления первой и последней сред

одинаковы, то узловые точки совпадают с главными.

 

 

  1. Инфракрасное и ультрафиолетовое излучение: природа излучения, свойства излучения, источники и методы обнаружения излучений. Биологическое значение этих видов излучений и их применение в медицине.

Ультрафиоле́ товое излуче́ ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением.

Обнаружить ультрафиолетовое излучение можно с помощью экрана, покрытого люминесцирующим веществом. Экран начинает светиться в той части, на которую приходятся лучи, лежащие за фиолетовой областью спектра.

Ультрафиолетовое излучение отличается высокой химической активностью.

Впрочем, в малых дозах ультрафиолетовые лучи производят целебное действие. Умеренное пребывание на солнце полезно, особенно в юном возрасте; ультрафиолетовые лучи способствуют росту и укреплению организма. Кроме прямого действия на ткани кожи (образование защитного пигмента - загара, витамина D2), ультрафиолетовые лучи оказывают влияние на центральную нервную систему, стимулируя ряд важных жизненных функций в организме.

Ультрафиолетовые лучи оказывают также бактерицидное действие. Они убивают болезнетворные бактерии и используются с этой целью в медицине.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.