Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Функционально-технологические свойства (ФТС) составных частей мяса






 

Приступая к рассмотрению ФТС составных частей мяса, следует напомнить, что наибольшее технологиче­ское значение имеют мышечная, жировая и соедини­тельная ткани, их количественное соотношение, каче­ственный состав и условия обработки.

Мышечная ткань является основным функциональ­ным компонентом мясного сырья и источником белко­вых веществ и состоит из мышечных волокон - своеоб­разных многоядерных клеток вытянутой формы (рис. 1, 2).

 

 

 

  Рис.1 Рис. 2 – Структура мышечного волокна:
1 – Мышечная ткань; 2 – Мышечные волокна; 3 – Мышечное волокно; 4 – Миофибриллы; 5 – Саркомер 1 – ядро; 2 – миофиламент; 3 – миофибрилла; 4 – саркоплазма; 5 – сарколемма; 6 – ретикулиновые волокна; 7 – эндомизиальные коллагеновые и эластиновые волокна.

 

Каждое мышечное волокно окружено тонкой соединительнотканной прослойкой - эндомизием, с помощью которой волокна объеди­няются в пучки первого порядка. Последние объединяются в пучки второго, третьего и т. д. порядков более плотной соединительноткан­ной прослойкой - перемизием.Из этих пучков формируется мускул, покрытый эпимизием, или фасцией.

В свою очередь мышечное волокно содержит мно­жество миофибрилл, саркоплазму и сарколемму (обо­лочку).

Миофибриллы (рис. 3) - основные сократительные элементы мышечного волокна - представляют собой молекулярный уровень мышцы, характеризуются поперечной исчерченностью, создаваемой структурными элемен­тами миофибриллы - саркомерами.

Миофибриллы существуют в виде длинных тонких структур, в которых под микроскопом различаются более или менее плотные зоны. Более светлые зоны представляют собой изотропные I – диски, а темные – анизотропные А–диски. Светлые зоны пересекаются темной линией (так называемой Z-линией).

Участок каждой миофибриллы, связанный на концах Z – полосками, рассматривается как структурная единица, или саркомер.

 

Рис. 3 – Схематичное изображение поперечно-полосатых миофибрилл:

1 – саркомер;

2 – А – диск;

3 – I – диск;

4 – Z – полоска

 

 

Саркомер пред­ставлен солерастворимыми контрактильными белка­ми актином и миозином.

Каждая миофибрилла состоит из нескольких параллельных филаментов (белковых нитей) двух типов – толстые и тонкие.

Толстые нити содержат главным образом миозин, тонкие – актин, тропонин, тропомиозин.

Миофибриллы окружены и тесно связаны с особой структурой, состоящей из трубочек и пузырьков, называемой саркплазматическим ретикулумом. В различных клетках саркоплазматический ретикулум отличается по форме и функ­циям. В клетках скелетных мышц, сокращение которых стимулирует­ся ионами Са2+, он участвует в процессе расслабления, обеспечивая реабсорбцию этих ионов.

На долю белков миофибрилл приходится около 30 % обще­го белка мышц. Они являются сократительными элементами клетки и представлены в основном миозином, актином, актомиозином, тропонином и некоторыми другими белками, 40 % массы которых приходится на миозин. Большое количество полярных групп, а также фибриллярная форма молекул обуславливают высокую гидратацию миозина. Актин составляет 12-15 % всех мышечных белков.

Изоэлектрическая точка миозина и актина составляет, соответственно, 5.4 и 4.7; температура денатурации 45-50 и 50-55°С.

Стабильность качественных характеристик мясопродуктов во многом зависит от количественного со­держания и состояния миозина и актина.

Вторая группа белков мышечной ткани - белки сар­коплазмы (20-25% от количества всех мышечных белков): миоген (20%), глобулин-Х (10-20%), миоальбумин, миоглобин и кельмодулин. Белки - водора­створимы, большая часть - полноценна, обладает высокой водосвязывающей способностью.

Особый интерес представляет миоглобин, обеспечи­вающий формирование привлекательного цвета у мя­сопродуктов.

Естественная окраска мяса обусловлена наличием в мы­шечной ткани миоглобина (Мb) - хромопротеина, состоящего из белкового компонента (глобина) и простетической группы (гема), и составляющего около 90 % общего количества пигментов мяса (10 % представлены гемоглобином крови). Содержание гемогло­бина в говядине колеблется в пределах от 0, 4 до 1, 0 %.

Небелковая часть миоглобина - гем - состоит из атома железа и четырех гетероцикличных пиррольных колец, связанных метиленовыми мостиками. Именно атом железа ответственен за формиро­вание различного цветового оттенка мяса, так как легко окисляясь и отдавая один электрон, он может образовывать три формы миогло­бина (рис.4).

 

 

 

Рис. 4 - Молекулярная структура дериватов миоглобина

 

В присутствии кислорода воздуха миоглобин окисляется с образова­нием оксимиоглобина – MbO2, который придает мясу приятный яр­кий розово-красный цвет. Однако, это соединение нестойко: под воздействием света, воздуха, времени выдержки, нагрева происхо­дит более глубокое окисление, сопровождающееся переходом желе­за гема из двухвалентного в трехвалентное. Образуется метмиогло­бин – MetMb коричнево-серого цвета.

К белкам стромы относятся коллаген, эластин, ретикулин.

Таким образом, мясо содержит липофильные белки. С од­ной стороны, это нерастворимый коллаген с его желирующей способностью, с другой - миозин и актин, которые могут сущест­вовать в виде актомиозина и растворяться в воде (особенно в со­леной). Эти виды белков должны быть в оптимальном соотноше­нии и совершенно необходимы для создания хорошей мясной структуры.

Как уже отмечалось, совокупность мышечных белков от­ветственна за эффективность образования мясных эмульсий, с которыми имеют дело специалисты в колбасном производстве и которые называют фаршем вареных колбас, сосисок и сарделек.

Известно, что количественное содержание белка в системе, его качественный состав, условия среды – все это предопределяет степень стабильности получаемых мясных систем, влияет на уровень водосвязывающей, эмульгирующей и жиропоглощающей способности, на структурно-механические и органолептические характеристик, на выход готовой продукции и т.д.

В частности, чрезмерное увеличение содержания мышечного белка в эмульсии сопровождается ухудшением консистенции готовых изделий; снижение концентрации – приводит к образованию бульонных и жировых отеков, появлению рыхлости, падению выхода.

Понять сущность приведенных примеров можно лишь после рассмотрения ФТС мышечных белков.

ФТС белков тесно связаны с их аминокислотным составом, структурой и физико-химическими свойствами.

В природе найдено около 200 аминокислот, однако в состав белков входят лишь 20 из них, которые получили название протеиногенных аминокислот.

Все протеиногенные аминокислоты являются a-аминокислотами:

 

 

Правая часть формулы одинакова для всех протеиногенных аминокислот. R–остаток (радикал) – функциональная группа, у разных аминокислот неодинаков по структуре, электрическому заряду и растворимости.

В зависимости от химических свойств R–групп все аминокислоты подразделяются на четыре основных класса: 1) неполярные, или гидрофобные; 2) полярные; 3) отрицательно заряженные (– СОО ); 4) положительно заряженные ().

В растворе возможно существование 4-х электрохимических форм аминокислот рис.5:

 

Рис.5

 

В водных растворах аминокислоты находятся в виде амфотерных ионов (цвиттер-ионов).

На ионизацию аминокислот в водных растворах большое внимание оказывает рН среды. В кислой среде высокая концентрация протонов подавляет диссоциацию карбоксильных групп () и аминокислоты заряжаются положительно.

В щелочной среде при избытке ОН­ –ионов аминокислоты находятся в виде анионов за счет диссоциации протонированных аминогрупп.

Так как в кислой среде аминокислоты заряжены положительно, а в щелочной – отрицательно, то величина электрического заряда аминокислоты находится в тесной взаимосвязи с рН среды. Состояние аминокислоты, когда ее суммарный электрический заряд равен нулю, называется изоэлектрическим, а значение рН, обуславливающее это состояние, называется изоэлектрической точкой аминокислоты (рI).

По пространственному строению белки делят на глобулярные и фибриллярные.

Глобулярные белки состоят из одной полипептидной цепи или нескольких, плотно свернутых за счет нековалентных, а часто и ковалентных связей в компактную частицу, называемую глобулой. Обычно глобулярные белки хорошо растворимы в воде.

Фибриллярные белки состоят их вытянутых или спирализованных полипептидных цепей, расположенных параллельно и удерживаемых вместе за счет многочисленных нековалентных связей. Полипептидные цепи объединены в волокна (фибриллы). Такие белки нерастворимы в воде.

ФТС белков тесно связаны с их химическим и аминокислотным составом, структурой и физико-химическими свойствами, которые определяют взаимодействие белок-белок, белок-вода; белок-липиды; а также поверхностно-активные свойства (образование эмульсий).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.