Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Сущность электрохимического метода обработки материалов






История развития электрохимического метода обработки материалов является не только яркой иллюстрацией завоевания мирового технологического пространства наукоемкими технологиями, но и подчеркивает государственную важность обладания такими технологиями, их дальнейшего развития.

Честь открытия почти всех известных в настоящее время процессов, в которых использовано электрохимическое воздействие на заготовку, принадлежит русским и советским ученым. Известный русский химик Е. И. Шпитальный еще в 1911 г. разработал процесс электролитического полирования. В 1928 г. В.Н. Гусевым и Л.А. Рожковым был предложен один из базовых способов электрохимической (ЭХ) размерной обработки - " анодное растворение при высоких плотностях тока с удалением анодных продуктов потоком электролита". Работы, выполненные под руководством В.Н. Гусева (1904-1956 гг.), позволили установить основные закономерности управляемого съема материала при высокоскоростном анодном растворении металлов и сплавов, создать и внедрить в промышленное производство первые образцы соответствующего оборудования.

Электрохимическая обработка это ряд методов, предназначенных для придания обрабатываемой металлической детали определенной формы, заданных размеров или свойств поверхностного слоя.

Электрохимическая обработка осуществляется в электролизерах (электролитических ваннах, электрохимических ячейках специальных станков, установок), где обрабатываемая деталь является либо анодом (анодная обработка), либо катодом (катодная обработка), либо тем и другим попеременно.

Сущность анодного растворения металловоснована на их способности растворяться в результате оксидных реакций, происходящих в среде электропроводного раствора — электролита — под действием на него постоянного электрического тока. Такой химический процесс растворения металлов называют электролизом. Электролиз протекает при наличии источника питания электрическим током, электролита и двух металлических проводников, называемых электродами, каждый из которых находится в электролитической ванне с электролитом.

В электролите свободными электрическими зарядами являются ионы, образующиеся при растворении, например в воде солей, кислот или щелочей. Молекулы таких веществ, взаимодействуя с молекулами растворителя — воды, распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. При этом движение ионов в электролите неупорядоченное. Под действием электрического поля, создаваемого источником питания, между электродом, соединенным с положительным полюсом и называемым анодом, и электродом-катодом, соединенным с отрицательным полюсом, возникает направленное движение ионов — отрицательно заряженные ионы (анионы) движутся к аноду, а положительно заряженные ионы (катионы) — к катоду. В электролите, таким образом, возникает электрический ток, представляющий упорядоченное движение положительно и отрицательно заряженных ионов.

Схема движения ионов в наиболее часто применяемом для ЭХО электролите — водном растворе хлористого натрия NaCl — приведена на рис. 1. При растворении хлористого натрия в воде его молекула распадается на катион натрия Na+ и анион хлора С1-. Вода Н2О при этом также частично диссоциирует на катионы водорода Н+ и анионы гидроксила ОН-. При подаче на электроды напряжения от источника питания анионы гидроксила и катионы водорода вместе с анионами хлора и катионами натрия вынуждены под действием сил электрического поля перемещаться соответственно к катоду и аноду. Атомы поверхностного слоя электрода-анода 1, получая от движущихся к нему анионов хлора и гидроксила дополнительные отрицательные заряды, превращаются в положительные ионы железа. Последние под действием сложных катодных и анодных реакций взаимодействуют с ионами гидроксила и образуют гидрат оксида железа Fe(OH)3, который в виде нерастворимого химического соединения выпадает в осадок. Таким образом, происходит электрохимическое анодное растворение железа. Одновременно с этим на катоде выделяется водород, выходящий из электролита в виде пузырьков. Реакции, протекающие на катоде, как правило, не разрушают его, т. е. катод при ЭХО не изнашивается.

 

Рис.1. Схема электролиза






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.