Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Учение Дарвина как генеральная линия эволюционного естествознания.






Эволюционная теория Дарвина представляет собой целостное учение об историческом развитии органического мира. Она охватывает широкий круг проблем, важнейшими из которых являются доказательства эволюции, выявление движущих сил эволюции, определение путей и закономерностей эволюционного процесса и др.

Сущность эволюционного учения заключается в следующих основных положениях:

-Все виды живых существ, населяющих Землю, никогда не были кем-то созданы.

- Возникнув естественным путем, органические формы медленно и постепенно преобразовывались и совершенствовались в соответствии с окружающими условиями.

- В основе преобразования видов в природе лежат такие свойства организмов, как наследственность и изменчивость, а также постоянно происходящий в природе естественный отбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг с другом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой за существование.

-Результатом эволюции является приспособленность организмов к условиям их обитания и многообразие видов в природе.

Основная заслуга Ч. Дарвина состоит в том, что он раскрыл механизмы образования и становления видов, т. е. объяснил механизм эволюции. Свои выводы он сделал на основе большого числа данных, накопленных к этому времени в области естествоиспытания, практике животноводства и растениеводства. Первым возможным выводом, сделанным Дарвином, был вывод о существовании в природе борьбы за существование. Этот вывод был сделан на основе того, что из появляющегося на свет огромного числа особей, до взрослого состояния доживают лишь единицы, следовательно, по мнению Дарвина, остальные гибнут в борьбе за жизнь. Вторым выводом было заключение о том, что для организмов характера всеобщая изменчивость признаков и свойств (даже в потомстве одной пары родителей нет одинаковых особей). В достаточно стабильных условиях эти мелкие различия могут не иметь значения. Однако при резких изменениях условий существования, один или несколько отличительных признаков могут стать решающими для выживания. Сопоставив факты борьбы за существование всеобщей изменчивости организмов, Дарвин делает обобщенное заключение о существовании в природе «естественного отбора» (избирательного выживания одних и гибели других особей). Материал для естественного отбора поставляет изменчивость организмов (мутационная и комбинативная). Результатов естественного отбора является образование большого числа приспособлений к конкретным условиям существования, которое мы рассматриваем с таксонометрической точки зрения – объединяем в сходные организмы в виды, роды, семейства.

18. Гипотеза де Бройля и формирование квантовой механики Шредингера-Гейзенберга-Дирака. Гипотеза де Бройля заключается в том, что французский физик Луи де Бройль выдвинул идею приписать волновые свойства электрону. Проводя аналогию между квантом, де Бройль предположил, что движение электрона или какой-либо другой частицы, обладающей массой покоя, связано с волновым процессом. Гипотеза де Бройля устанавливает, что движущейся частице, обладающей энергией E и импульсом p, соответствует волновой процесс, частота которого равна: а длина волны: где p - импульс движущейся частицы. В 1926 году австийский физик Шредингер предложил уравнение, описывающих поведение волн, соответствующих каждой частице (волн де Бройля), во внешних силовых полях. Это волновое уравнение, которое получило название уравнение Шредингера, является основным уравнением нерелятивистской квантовой механики, волновой механики.Уравне́ ние Шрёдингера — уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Его можно назвать уравнением движения квантовой частицы. Установлено Эрвином Шрёдингером в 1926 году.Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства.Уравнение Шредингера

В 1928 году Дираком было сформулировано релятивистское уравнение, описывающее движение электрона во внешнем силовом поле. Уравнение Дирака стало одним из основных уравнений релятивистской квантовой механики.

где m — масса электрона (или другого фермиона, описываемого уравнением), c— скорость света, — три оператора компонент импульса (по x, y, z),, — постоянная Планка, x=(x, y, z) и t пространственные координаты и время соответственно, и — четырёхкомпонентная комплексная волновая функция (биспинор).

— линейные операторы над пространством биспиноров, которые действуют на волновую функцию. Эти операторы подобраны так, что каждая пара таких операторов антикоммутирует, а квадрат каждого равен единице:

, где и индексы меняются от 0 до 3,

для i от 0 до 3.

Немецкий физик В.Гейзенберг в 1925 году построил формальную схему, в которой вместо координат и скоростей электрона фигурировали некоторые абстрактные абстрактные величины - матрицы.

Работа Гейзенберга была развита Борном и Иорданом. Так возникла матричная механика. Вскоре после появления уравнения Шредингера эквивалентность этих двух форм была доказана. Окончательное формирование квантовой механики как последовательной теории связано с работой Гейзенберга 1927 года, в которой был сформулирован принцип, утверждающий, что любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные, точные значения. Этот принцип получил название " соотношение неопределенностей". Если имеется несколько (много) идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности — это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения координаты и среднеквадратического отклонения импульса, мы найдем что:

где — приведённая постоянная Планка.

19. Иерархия структур природы. Микромир: ядра атомов, элементарные частицы, кварки.Фундаментальные взаимодействия. Элементарные частицы объединяются в три группы: фотоны, лептоны и адроны. К группе фотонов относится единственная частица – фотон, которая является носителем электромагнитного взаимодействия.Следующая группа состоит из легких частиц – лептонов. В эту группу входят два сорта нейтрино (электронное и мюонное), электрон и μ -мезон. К лептонам относятся еще ряд частиц, не указанных в таблице. Все лептоны имеют спин 0.5Третью большую группу составляют тяжелые частицы, называемые адронами. Эта группа делится на две части. Более легкие частицы составляют подгруппу мезонов. Наиболее легкие из них – положительно и отрицательно заряженные, а также нейтральные π -мезоны с массами порядка 250 электронных масс (табл. 6.9.1). Пионы являются квантами ядерного поля, подобно тому, как фотоны являются квантами электромагнитного поля. В эту подгруппу входят также четыре K-мезона и один η 0-мезон. Все мезоны имеют спин(Спин- собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого)равный нулю.Вторая подгруппа – барионы – включает более тяжелые частицы. Она является наиболее обширной. Самыми легкими из барионов являются нуклоны – протоны и нейтроны. За ними следуют так называемые гипероны. Замыкает таблицу омега-минус-гиперон, открытый в 1964 г. Это тяжелая частица с массой в 3273 электронных масс. Все барионы имеют спин 0.5Обилие открытых и вновь открываемых адронов навела ученых на мысль, что все они построены из каких-то других более фундаментальных частиц. В 1964 г. американским физиком М. Гелл-Маном была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые частицы – адроны – построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых. Теория Гелл-Мана предполагала существование трех кварков и трех антикварков, соединяющихся между собой в различных комбинациях. Так, каждый барион состоит из трех кварков, антибарион – из трех антикварков. Мезоны состоят из пар кварк–антикварк.С принятием гипотезы кварков удалось создать стройную систему элементарных частиц. Однако предсказанные свойства этих гипотетических частиц оказались довольно неожиданными. Электрический заряд кварков должен выражаться дробными числами, равными 2/3 и 1/3 элементарного заряда.Многочисленные поиски кварков в свободном состоянии, производившиеся на ускорителях высоких энергий и в космических лучах, оказались безуспешными. Ученые считают, что одной из причин ненаблюдаемости свободных кварков являются, возможно, их очень большие массы. Это препятствует рождению кварков при тех энергиях, которые достигаются на современных ускорителях. Тем не менее, большинство специалистов сейчас уверены в том, что кварки существуют внутри тяжелых частиц – адронов.Атомное ядро - положительно заряженная центральная часть атома, имеющая объем, в котором сосредоточена основная его масса. Атомное ядро состоит из протонов и нейтронов. Число протонов определяет заряд атомного ядра. Зарядовое число - характеристика атомного ядра; число протонов в атомном ядре, совпадающее с порядковым номером химического элемента в периодической системе элементов. Нейтрон - входящая в состав ядерных ядер электрически нейтральная элементарная частица:

- с массой покоя, равной 1838 массам электрона; - распадающаяся в свободном состоянии на протон, электрон и антинейтрино; - с периодом полураспада 750 сек.; - имеющая античастицу (антинейтрон).

Протон - входящая в состав ядерных ядер устойчивая элементарная частица: - с положительным электрическим зарядом; - со спином 1/2; - с массой покоя, равной 1836 массам электрона; - имеющая античастицу (антипротон).

К настоящему времени известны четыре вида основных фундаментальных взаимодействий: · гравитационное; · электромагнитное; · сильное; · слабое.

Гравитационное взаимодействие характерно для всех материальных объектов вне зависимости от их природы. Оно заключается во взаимном притяжении тел и определяется фундаментальным законом всемирного тяготения: между двумя точечными телами действует сила притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Гравитационным взаимодействием определяется падение тел в поле сил тяготения Земли. Законом всемирного тяготения описывается, например, движение планет Солнечной системы, а также других макрообъектов. Предполагается, что гравитационное взаимодействие обусловливается некими элементарными частицами – гравитонами, существование которых к настоящему времени экспериментально не подтверждено.

Электромагнитное взаимодействие связано с электрическими и магнитными полями. Электрическое поле возникает при наличии электрических зарядов, а магнитное поле – при их движении. В природе существуют как положительные, так и отрицательные заряды, что и определяет характер электромагнитного взаимодействия. Например, электростатическое взаимодействие между заряженными телами в зависимости от знака заряда сводится либо к притяжению, либо к отталкиванию. При движении зарядов в зависимости от их знака и направления движения между ними возникает либо притяжение, либо отталкивание. Различные агрегатные состояния вещества, явление трения, упругие и другие свойства вещества определяются преимущественно силами межмолекулярного взаимодействия, которое по своей природе является электростатическим. Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродинамики: законом Кулона, законом Ампера и др. Его наиболее общее описание дает электромагнитная теория Максвелла, основанная на фундаментальных уравнениях, связывающих электрическое и магнитное поля

Сильное взаимодействие обеспечивает связь нуклонов в ядре и определяет ядерные силы. Предполагается, что ядерные силы возникают при обмене между нуклонами виртуальными частицами – мезонами.

Наконец, слабое взаимодействие описывает некоторые виды ядерных процессов. Оно короткодействующее и характеризует все виды бета-превращений.

20. Концепции возникновения жизни на земле, биохимическая эволюция. Концепция Опарина возникновения жизни на земле и опыт Миллера В современном естествознании существует пять основных концепций возникновения жизни: 1) креационизм — божественное сотворение живого; 2) концепция многократного самопроизвольного зарождения жизни из неживого вещества; 3) концепция стационарного состояния, в соответствии с которой жизнь существовала всегда; 4) концепция панспермии — внеземного происхождения жизни; 5) концепция происхождения жизни на Земле в историческом прошлом в результате процессов, подчиняющихся естественно-научным законам.

Первая концепция является религиозной и к науке прямого отношения не имеет. В качестве основополагающего тезиса в данных концепциях рассматривается положение о том, что жизнь как на Земле, так и вообще где-либо во Вселенной не может возникнуть случайно. Жизнь представляет собой акт преднамеренного творения, что приводит к отождествлению современных космологических представлений с религиозными истинами, и для вечной, безграничной Вселенной характерно неизменное постоянство картин жизни.

Вторая концепция В конце прошлого века были распространены " теории", согласно которым жизнь возникает в болотах, гниющей массе и тому подобных местах. Именно там из неживой материи возникают живые организмы — личинки мухи и даже мыши. Вторую концепцию опроверг изучавший деятельность бактерий французский микробиолог XIX в. — Луи Пастер.

Третья концепция из-за своей оригинальности и умозаключительности всегда имела немного сторонников.

К началу XX в. в науке господствовали две последние концепции.

Концепция панспермии, согласно которой жизнь была занесена на Землю извне, опиралась на обнаружение при изучении метеоритов и комет " предшественников живого" — органических соединений, которые, возможно, сыграли роль " семян". Во второй половине прошлого века шведский ученый Сванте Ар-рениус выдвинул оригинальную гипотезу. По его мнению, жизнь возникла не на Земле, а была занесена на нее из космоса. Наша планета была " заражена" микроорганизмами, прибывшими из глубин Вселенной. Этот процесс Аррениус назвал панспермией. Гипотеза шведского ученого не получила поддержки его коллег. Никто не видел возможности для микроорганизмов длительно путешествовать в космическом пространстве, не погибая от губительных излучений. В свое время эту гипотезу обсуждали очень бурно.

У концепции появления жизни на Земле в историческом прошлом два варианта. Согласно одному, происхождение жизни — результат случайного образования единичной " живой молекулы", в строении которой был заложен весь план дальнейшего развития живого. Согласно другой точке зрения, происхождение жизни — результат закономерной эволюции материи.

Эта последняя концепция представляется наиболее научной. Общность развиваемых учеными взглядов состоит в принятии за исходные тезисы утверждения о том, что все необходимые для возникновения жизни биологически значимые органические соединения могут образоваться в абиогенных условиях, т. е. без участия живого, лишь на основе физико-химических закономерностей превращения веществ. Большинство современных специалистов также убеждено, что возникновение жизни в условиях первичной Земли есть результат естественной эволюции материи.

В 1923 году советским биохимиком Алексеем Опариным была разработана теория биохимической эволюции.

Основу этой теории составляла идея о том, что миллиарды лет назад при формировании планеты первыми органическими веществами были углеводороды, которые образовались в океане из более простых соединений.

Соединения углеводорода с азотом и простейших молекул аммиака, воды, метана и водорода с рядом других химических элементов образовывали сложные органические вещества. Энергию для осуществления этих процессов создавали частые грозовые электрические разряды и интенсивная солнечная радиация, выделявшая значительное количество ультрафиолетового излучения, падавшего на Землю до того, как образовался озоновый слой.

Органические вещества, постепенно накапливаясь в океане, создавали прочные молекулярные связи, которые были устойчивы к разрушающему действию ультрафиолетового излучения.

Позднее теория биохимической эволюции получила развитие в трудах английского учёного Джона Холдейна, который сформулировал гипотезу о том, что жизнь явилась результатом длительных эволюционных углеродных соединений. Вещества, близкие по своему химическому составу к белкам и другим органическим соединениям, составляющие основу живых организмов, возникли на основе углеводородов.

Белковые соединения в «первичном бульоне» притягивали и связывали молекулы жиров и воды, что позволяло жирам обволакивать поверхность белковых тел, структура которых напоминала мембрану клеток. Полученные в результате такого взаимодействия тела Опарин назвал коацерватами (коацерватными каплями), а сам процесс – коацервацией.

В дальнейшем поглощая из окружавшей среды белковые вещества, структура коацерватов усложнялась, и они стали похожи на примитивные, но уже живые клетки, а химические соединения внутреннего состава позволяли им расти, видоизменяться, осуществлять обмен веществ и размножаться.

Теория биохимической эволюции, важным этапом которой явилось формирование мембранной структуры, предполагала, что с появлением мембраны ускорился процесс упорядочения и усовершенствования метаболизма, а дальнейшее усложнение обмена веществ происходило с помощью катализаторов.

2. В 1923 году советским биохимиком Алексеем Опариным была разработана теория биохимической эволюции.

Основу этой теории составляла идея о том, что миллиарды лет назад при формировании планеты первыми органическими веществами были углеводороды, которые образовались в океане из более простых соединений.

Соединения углеводорода с азотом и простейших молекул аммиака, воды, метана и водорода с рядом других химических элементов образовывали сложные органические вещества. Энергию для осуществления этих процессов создавали частые грозовые электрические разряды и интенсивная солнечная радиация, выделявшая значительное количество ультрафиолетового излучения, падавшего на Землю до того, как образовался озоновый слой.

Органические вещества, постепенно накапливаясь в океане, создавали прочные молекулярные связи, которые были устойчивы к разрушающему действию ультрафиолетового излучения.

Позднее теория биохимической эволюции получила развитие в трудах английского учёного Джона Холдейна, который сформулировал гипотезу о том, что жизнь явилась результатом длительных эволюционных углеродных соединений. Вещества, близкие по своему химическому составу к белкам и другим органическим соединениям, составляющие основу живых организмов, возникли на основе углеводородов.

Белковые соединения в «первичном бульоне» притягивали и связывали молекулы жиров и воды, что позволяло жирам обволакивать поверхность белковых тел, структура которых напоминала мембрану клеток. Полученные в результате такого взаимодействия тела Опарин назвал коацерватами (коацерватными каплями), а сам процесс – коацервацией.

В дальнейшем поглощая из окружавшей среды белковые вещества, структура коацерватов усложнялась, и они стали похожи на примитивные, но уже живые клетки, а химические соединения внутреннего состава позволяли им расти, видоизменяться, осуществлять обмен веществ и размножаться.

Теория биохимической эволюции, важным этапом которой явилось формирование мембранной структуры, предполагала, что с появлением мембраны ускорился процесс упорядочения и усовершенствования метаболизма, а дальнейшее усложнение обмена веществ происходило с помощью катализаторов.

В 1953 году американский исследователь Стэнли Миллер провёл ряд экспериментов, в которых смоделировал возможные условия жизни на Земле: Через смесь газов, которые предположительно входили в состав примитивной атмосферы, Миллер пропускал электрические разряды («молнии») и после этого обнаружил в ней водорастворимые молекулы органических веществ. Не менее 15% углерода, входившего первоначально в состав метана, превращалось в относительно небольшое число некрупных молекул, включая четыре из двадцати аминокислот, образующих белки. Т.е ему удалось получить соединения альдегидов, аминокислот, уксусную, молочную и ряд других органических кислот.

Теория биохимической эволюции и происхождения жизни на Земле, высказанная Алексеем Опариным, признана многими ученые, однако из-за большого количества предположений и допущений, она вызывает некоторые сомнения.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.