Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Шум, ультразвук та інфразвук






ШУМ ТА ЙОГО ВИДИ

У сучасному світі в умовах науково-технічного прогресу шум став одним із суттєвих несприятливих чинників, що впливають на людину. Ріст потужностей сучасного устаткування, машин, побутової техніки, швидкий розвиток всіх видів транспорту призвели до того, що людина на виробництві та в побуті постійно знаходиться під впливом шумів досить високої інтенсивності. Шум буває: механічного походження, який виникає внаслідок вібрації при роботі механізмів та устаткування, а також поодиноких чи періодичних ударів у з’єднаннях деталей та конструкцій; аеродинамічного походження, який виникає при подачі газу чи повітря по трубопроводах, вентиляційних системах, або їх стравлюванні в атмосферу; гідродинамічного походження, який виникає внаслідок процесів, що проходять у рідинах (гідравлічні удари, кавітація, турболентність потоку); електромагнітного походження, який виникає внаслідок коливання елементів електромеханічних пристроїв під впливом змінних магнітних полів.

Шум у виробничих умовах негативно впливає на працівника: послаблює увагу, посилює розвиток втоми, сповільнює реакцію на небезпеку. Внаслідок цього знижується працездатність та підвищується імовірність нещасних випадків. Тому питання боротьби з шумом на сьогоднішній день є актуальним майже для всіх галузей виробництва.

Для успішної боротьби з шумом необхідно знати його фізичні характеристики, закономірності виникнення та поширення. Шумом прийнято вважати звуки, які негативно впливають на організм людини, заважають його роботі та відпочинку. Тому шум часто називають несприятливим звуком. Зазвичай шум створюється при хаотичному чергуванні звуків різної частоти та інтенсивності. Звук, як фізичне явище, являє собою коливальний рух, що поширюється хвилеподібно у пружному середовищі (газоподібному, рідинному чи твердому). Звук, а значить і шум, характеризується: швидкістю звуку с, м/с, частотою/ Гц\ звуковим тиском р, Па', інтенсивністю І, Вт/м^.

Звук, що поширюється у повітряному середовищі, називається повітряним звуком, а в твердих тілах — структурним. Повітряний простір, в якому поширюються звукові хвилі називається звуковим полем. У результаті коливань, що генеруються джерелом звуку, в повітрі виникає звуковий тиск, який накладається на атмосферний. Різницю між атмосферним тиском і значенням повного тиску в даній точці звукового поля прийнято вважати звуковим тиском. Поширення звукової хвилі супроводжується перенесенням звукової енергії. Середній потік звукової енергії в будь-якій точці середовища за одиницю часу, віднесений до одиниці поверхні, перпендикулярної до напрямку поширення хвилі, називається інтенсивністю або силою звуку в даній точці / і вимірюється в Вт/м^. І = рУрс,

Виділяють два порогових значення звукового тиску та інтенсивності звуку. Мінімальні значення звукового тиску та інтенсивності звуку, які сприймаються органом слуху людини як звук називаються порогом чутності. При частоті звуку /= 1000 Гц, яка прийнята базовою в акустиці, поріг чутності має наступні значення: р^ = 2-1(ґ^ Н/м^, = Кґ'^Вт/м^.

Звуковий тиск = 20 Н/лР-) та інтенсивність звуку (/^ = 1 Втім^), при яких починають виникати больові відчуття в органі слуху людини називаються порогом больового відчуття. Великий діапазон значень між порогами чутності та больового відчуття (за звуковим тиском — 10^, а за інтенсивністю звуку — 10‘^) викликав чималі труднощі при їх практичному використанні. Тому від абсолютних значень параметрів звукур та /, перейшли до відносних значень — рівнів {Ь), застосувавши при цьому логарифмічну шкалу:

1 = 1§(///„) = 21§(р/р„); (5), (2.30)

де І, р — відповідно інтенсивність звуку та звуковий тиск у даній точці;

^о’Ро— інтенсивність звуку та звуковий тиск на порозі чутності.

В середині XIX століття німецький фізик Г. Т. Фехнер вивів закон сприйняття, згідно з яким величина відчування органів чуття людини, в тому числі й чутності, пропорційна логарифму величини подразнення. Так що рівень звуку оцінюється за логарифмічною шкалою не випадково.

Підставивши у формулу (2.32) замість І значення та одержимо, що інтервал від порогу чутності до порогу больового відчуття становить 120 дБ, що значно зручніше для практичного використання.

Значення добавки до сили шуму одного джерела в залежності від кількості однакових джерел шуму

При більшому ніж 2 числі джерел шуму підсумовування за формулою (2.33) проводиться послідовно від найбільшого до найменшого. Якщо різниця рівнів сили шуму двох джерел є більшою ніж 6—8 05, то рівнем сили шуму меншого з них можна знехтувати.

Сприйняття звуку органом слуху людини залежить не лише від його кількісних характеристик (звукового тиску чи інтенсивності), але й від його «якості» (частоти). Тому рівень сили звуку (шуму) та гучність — це різні поняття. Рівень сили звуку визначає лише фізичну величину сили звуку незалежно від його частотної характеристики. Рівень гучності враховує ще й фізіологічні особливості сприйняття, тобто різну чутливість органа слуху до звуків різної частоти. Найбільш чутливе наше вухо до звуків частотою 2000-4000 Л/.

Рівень гучності визначається шляхом порівняння зі звуком частотою 1000 Гц, для якого рівень сили звуку в децибелах прийнято за рівень гучності у фонах. Залежність фізіологічного сприйняття гучності від рівня сили та частоти звуку наведено на рис. 2.33. Із рисунка видно, що найбільша різниця між значеннями, що виміряні в децибелах та у фонах спостерігається в області низьких частот. Наприклад, при рівні

СИЛИ звуку 50 дБ і частоті 1000 Гц рівень гучності звуку також рівний 50 фон, що відповідає гучності розмови на відстані 1 м, при частоті ж 50 Гц, цей звук взагалі не можна було б почути.

В області низьких частот рівень гучності звуку змінюється значно швидше ніж рівень сили звуку, в міру зростання сили звуку криві рівної гучності все більше наближаються до прямої лінії, а при рівнях вище 80 фон чутність звуку визначається практично лише його силою, незалежно від частоти.

ЗАХОДИ ТА ЗАСОБИ ЗАХИСТУ ВІД ШУМУ

Заходи та засоби захисту від шуму поділяються на колективні та індивідуальні, причому останні застосовуються лише тоді, коли заходами та засобами колективного захисту не вдається знизити рівні шуму на робочих місцях до допустимих значень. Призначення засобів індивідуального захисту (313) від шуму — перекрити найбільш чутливі канали проникнення звуку в організм — вуха. Тим самим різко послаблюються рівні звуків, що діють на барабанну перетинку, а відтак — і коливання чутливих елементів внутрішнього вуха. Такі засоби дозволяють одночасно попередити розлад і всієї нервової системи від дії інтенсивного подразника, яким є шум.

До 313 від шуму належать навушники, протишумові вкладки, шумозаглушувальні шоломи (див. розділ 2.12). Вибір 313 обумовлюється видом та характеристикою шуму на робочому місці, зручністю використання засобу при виконанні даної робочої операції та конкретними кліматичними умовами.

Засоби колективного захисту від шуму подібно до віброзахисту поділяються за такими напрямками:

— зменшення шуму в самому джерелі;

— зменшення шуму на шляху його поширення;

—організаційно-технічні заходи;

—лікувально-профілактичні заходи.

Зменшення шуму у самому джерелі — найбільш радикальний засіб боротьби з шумом, що створюється устаткуванням. Досвід показує, що ефективність заходів щодо зниження шуму устаткування, що вже працює, досить невисока, тому необхідно прагнути до максимального зниження шуму в джерелі ще на стадії проектування устаткування. Це досягається за допомогою наступних заходів та засобів: удосконалення кінематичних схем та конструкцій устаткування; проведення статичного та динамічного зрівноважування і балансування; виготовлення деталей, що співударяються та корпусних деталей з неметалевих матеріалів (пластмас, текстоліту, гуми); чергування металевих та неметалевих деталей; підвищення точності виготовлення деталей та якості складання вузлів і устаткування; зменшення зазорів у з’єднаннях шляхом зменшення припусків; застосування мащення деталей, що труться і т. п.

Організаційно-технічні засоби захисту від шуму передбачають: застосування малошумних технологічних процесів та устаткування, оснащення шумного устаткування засобами дистанційного керування, дотримання правил технічної експлуатації, проведення планово-попереджувальних оглядів та ремонтів.

До заходів лікувально-профілактичного характеру належать попередній та періодичні медогляди, використання раціональних режимів праці та відпочинку для працівників

шумних дільниць та цехів, допуск до «шумних» робіт з 18 років тощо.

Архітектурно-планувальні заходи щодо захисту від шуму передбачаються при проектуванні, реконструкції та експлуатації підприємства (цехів, дільниць). Вони дозволяють зменшити вплив виробничих шумів на працівників нешумних виробництв та мешканців житлових масивів, що розташовані поруч з підприємством.

Для зменшення шкідливого впливу виробничого шуму на працівників шумних виробництв, послаблення передавання його в сусідні приміщення застосовують звуко- і віброізоляцію, звуко- і вібропоглинання та глушники шуму.

Звукоізоляція є ефективним засобом зменшення рівня шуму на шляху його поширення, що реалізується щляхом встановлення звукоізоляційних перешкод (перегородок, кабін, кожухів, екранів). Принцип звукоізоляції базується на тому, що більша частина звукової енергії, яка потрапляє на перешкоду, відбивається і лише незначна її частина проникає через неї.

Для звукоізоляції окремих шумних дільниць у приміщенні чи устаткування застосовують легкі багатошарові звукоізоляційні перегородки з повітряними прошарками. Для звукоізоляції найбільш шумних вузлів та агрегатів (ланцюгові передачі, двигуни, компресори, вентилятори) використовуються звукоізоляційні кожухи, які є засобами, що встановлюються в безпосередній близькості від джерела шуму. В тих випадках, коли неможливо ізолювати шумне устаткування чи його вузли, захист працівника від дії шуму здійснюють шляхом встановлення звукоізольованої кабіни з пультом керування та оглядовими вікнами.

Метод акустичного екранування застосовується в тих випадках, коли інші методи малоефективні або недоцільні з техніко-економічної точки зору. Акустичний екран встановлюється між джерелом шуму та робочим місцем і являє собою певну перешкоду на шляху поширення прямого шуму, за якою виникає, так звана, звукова тінь. Найбільш поширеними для виготовлення екранів є сталеві чи алюмінієві листи товщиною 1—З мм, які покриваються зі сторони джерела шуму звукопоглинальним матеріалом.

Рівень шуму у виробничому приміщенні залежить не лише від прямого, але й відбитого звуку. Тому, якщо в цеху неможливо знизити енергію прямого звуку, то необхідно зменшити енергію звукових хвиль, які відбиваються від внутрішніх поверхонь приміщення. Для цього проводять акустичне оброблення всіх або частини стін та стелі

 

приміщень шумних виробництв за допомогою звукопоглинального облицювання та (або) підвішують до стелі штучні звукопоглиначі. Процес поглинання звуку відбувається при переході коливної енергії частинок повітря в теплоту внаслідок втрат на тертя в порах звукопоглинального матеріалу. Тому для ефективного звукопоглинання матеріал повинен мати пористу структуру, причому необхідно щоб пори були відкриті зі сторони звукової хвилі і мали якнайбільше з’єднань між собою. Штучні звукопоглиначі найдоцільніше розміщувати в зонах, де концентруються звукові хвилі, що відбиваються від внутрішніх поверхонь приміщення.

Звукопоглиначі можуть мати різну форму (куля, куб, ромб, піраміда) і виготовляються з перфорованих листів твердого картону, пластмаси чи металу, які зі середини покриті звукопоглинальним матеріалом.

Глушники шуму — це ефективний засіб боротьби з шумом аеродинамічного походження, який виникає при роботі вентиляційних систем, пневмоінструменту, газотурбінних, дизельних, компресорних та деяких інших установок. За принципом дії глушники поділяють на активного, реактивного та комбінованого типу. У глушників активного типу зниження шуму відбувається внаслідок його затухання в порах звукопоглинального матеріалу, В глушниках реактивного типу шум знижується шляхом відбивання звукових хвиль у системі розширювальних та резонансних камер, що з’єднані між собою за допомогою труб, щілин та отворів. У комбінованих глушниках відбувається як поглинання, так і відбивання шуму.

ІНФРАЗВУК

Інфразвук — це коливання в пружному середовищі, що мають однакову з щумом фізичну природу, але пощирюються з частотою менщою за 20 Гц. Основними джерелами інфразвуку на виробництві є тихохідні масивні установки та механізми (вентилятори, порщневі компресори, турбіни, електроприводи та ін.), що здійснюють обертові та зворотно-поступальні рухи з повторенням циклу менще ніж 20 разів за секунду (інфразвук механічного походження). Інфразвук аеродинамічного походження виникає при турбулентних процесах у потоках газів чи рідин.

Хоча людина і не чує інфразвуку, він чинить несприятливий вплив на весь організм людини, в тому числі й на орган слуху, знижуючи його рівень чутності практично на всьому частотному діапазоні звукових хвиль. Інфразвукові коливання сприймаються людиною як фізичне навантаження, що викликає передчасне втомлення, запаморочення, біль голови, порушення функції вестибулярного апарату, зниження гостроти зору та слуху, появу почуття страху, загальну немічність. Медики виявили, що інфразвук може також впливати і на психіку людини.

Несприятливий вплив інфразвуку суттєво залежить від рівня звукового тиску, тривалості впливу та діапазону частот. Найбільш небезпечною вважається частота інфразвукових коливань близько 7 Гц, оскільки вона співпадає з альфа-ритмом біострумів мозку і може викликати резонансні явища.

Інфразвук поділяють на постійний і непостійний. У першого рівень звукового тиску змінюється не більш, а у другого — більш ніж на 10 на 1 хв. Відповідно до ДСН 3.3.6.037-99 характеристиками інфразвуку, що нормуються на робочих місцях, є рівні звукового тиску в октавних смугах частот з середньогеометричними частотами 2, 4, 8 і \6 Гц (для постійного інфразвуку) та загальний еквівалентний рівень звукового тиску по шкалі «Лінійна» шумоміра в (для непостійного інфразвуку).

Традиційні методи боротьби з шумом, засновані на звукоізоляції та звукопоглинанні, є малоефективні щодо інфразвуку, оскільки останній має значно вищу проникну здатність. Тому необхідно, перш за все, домогтися усунення або зниження рівня інфразвуку в джерелі, що його генерує. Для цього підвищують циклічність устаткування (більше 20 ц/с), жорсткість коливних конструкцій великих розмірів, встановлюють глушники реактивного типу тощо.

УЛЬТРАЗВУК

Ультразвук широко використовується в багатьох галузях промисловості для інтенсифікації процесів хімічного травлення, нанесення металевого покриття, очищення, змивання та знежирення деталей і виробів, дефектоскопії (оцінка якості зварних швів, структури сплаву) та ін.

Ультразвук так само як і інфразвук орган слуху людини не сприймає, однак він може викликати біль голови, загальну втому, розлади серцево-судинної та нервової систем.

За способом передачі від джерела до людини ультразвук поділяють на: повітряний (передається через повітря) та контактний (передається на руки людини, що працює через тверде чи рідинне середовище).

За спектром ультразвук поділяють на: низькочастотний (коливання частотою від 1, 2 • 10'' до 1, 0 • 10^ Л/ передаються людині повітряним чи контактним шляхом) та високочастотний (коливання частотою від 1, 0 • 10^ до 1, 0 • 10’ Гц передаються людині тільки контактним шляхом).

Параметрами повітряного ультразвуку, що нормуються у робочій зоні є рівні звукового тиску в третинооктавних смугах з середньогеометричними частотами 12, 5; 16, 0; 20, 0; 25, 0; 31, 5; 40, 0; 63, 0; 80, 0; 100, 0 кГц. Для контактного ультразвуку параметром, що нормується, є пікове значення віброшвидкості в частотному діапазоні від 0, 1 МГц до 10, 0 МГц або його логарифмічний рівень. Допускається також застосовувати як параметр інтенсивність ультразвуку.

Робота ультразвукових установок на більш високих частотах, для яких допустимі рівні звукового тиску є більш вищими, а також застосування засобів звукоізоляції (звукоізоляційні кожухи, захисні екрани, звукоізольовані кабіни, розміщення ультразвукового устаткування в окремому звукоізольованому приміщенні) забезпечують захист від ультразвуку, який передається через повітря.

Для виключення впливу контактного ультразвуку роботи з коливними рідинними середовищами (завантаження, вивантаження) необхідно проводити при вимкненому джерелі ультразвуку, або використовувати для цього спеціальні інструменти, що мають ручки з еластичним покриттям, наприклад, гумовим. Як засоби індивідуального захисту, використовують протишумові навушники (дія через повітря) та двошарові рукавички із зовнішнім гумовим шаром (контактна дія).

ІОНІЗУЮЧЕ ВИПРОМІНЮВАННЯ

ВИДИ, ВЛАСТИВОСТІ ТА ОДИНИЦІ ВИМІРЮВАННЯ ІОНІЗУЮЧОГО ВИПРОМІНЮВАННЯ

Іонізуюче випромінювання — це випромінювання, взаємодія якого з середовищем призводить до утворення електричних зарядів (іонів) різних знаків. Джерелом іонізуючого випромінювання є природні та штучні радіоактивні речовини та елементи (уран, радій, цезій, стронцій та інші). Джерела іонізуючого випромінювання широко використовуються в атомній енергетиці, медицині (для діагностики та лікування) та в різних галузях промисловості (для дефектоскопії металів, контролю якості зварних з’єднань, визначення рівня агресивних середовищ у замкнутих об’ємах, боротьби з розрядами статичної електрики і т. д.).

Іонізуюче випромінювання поділяється на електромагнітні (фотонні) та корпускулярні. До останніх належать випромінювання, що складаються із потоку частинок, маса спокою яких не рівна нулю (альфа- і бета-частинок, протонів, нейтронів та ін.). До електромагнітного випромінювання належать гамма- та рентгенівські випромінювання.

Альфа-випромінювання — потік позитивно заряджених частинок (ядер атомів гелію), що рухаються зі швидкістю 20 000 кміс.

Бета-випромінювання — потік електронів та позитронів. їх швидкість наближається до швидкості світла.

Гамма-випромінювання — являють собою короткохвильове електромагнітне випромінювання, яке за своїми властивостями подібне до рентгенівського, однак має значно більшу швидкість (приблизно дорівнює швидкості світла) та енергію.

Іонізуюче випромінювання характеризується двома основними властивостями: здатністю проникати через середовище, що опромінюється та іонізувати повітря і живі клітини організму. Причому обидві ці властивості іонізуючого випромінювання зв’язані між собою оберненою пропорційною залежністю. Найбільшу проникну здатність мають гамма- та рентгенівські випромінювання. Альфа- та бета-частинки, а також інші, що належать до корпускулярного іонізуючого випромінювання швидко втрачають свою енергію на іонізацію, тому в них порівняно низька проникна здатність.

Дія іонізуючого випромінювання оцінюється дозою випромінювання. Розрізняють поглинуту; еквіва-лентну та експозиційну дози.

ЗАХИСТ ВІД ІОНІЗУЮЧОГО ВИПРОМІНЮВАННЯ

Умови безпеки при використанні радіоактивних ізотопів у промисловості передбачають розробку шмплексу захисних заходів та засобів не лише стосовно осіб, які безпосередньо працюють з радіоактивними речовинами, але й тих, хто знаходиться у суміжних приміщеннях, а також населення, що проживає поруч з небезпечним підприємством (об’єктом). Засоби та заходи захисту від іонізуючого випромінювання підрозділяються на: організаційні, технічні, санітарно-гігієнічні та лікувально-профілактичні.

Організаційні заходи від іонізуючого випромінювання передбачають забезпечення виконання вимог норм радіаційної безпеки. Приміщення, які призначені для роботи з радіоактивними ізотопами повинні бути ізольовані від інших і мати спеціальне оброблення стін, стелі, підлоги. Відкриті джерела випромінювання і всі предмети, які опромінюються повинні знаходитись в обмеженій зоні, перебування в якій персоналу дозволяється у виняткових випадках, та й то короткочасно. На контейнерах, устаткуванні, дверях приміщень та інших об’єктах наноситься попереджувальний знак радіаційної небезпеки (на жовтому фоні чорний схематичний трилисник).

На підприємствах складаються та затверджуються інструкції з охорони праці, у яких вказано порядок та правила безпечного проведення робіт. Для проведення робіт необхідно, за можливістю, вибирати якнайменшу достатню кількість ізотопів («захист кількістю»). Застосування приладів більшої точності дає можливість використовувати ізотопи, з меншою активністю («захист якістю»). Необхідно також організувати дозиметричний контроль та своєчасне збирання і видалення радіоактивних відходів із приміщень у спеціальних контейнерах.

До технічних заходів та засобів захисту від іонізуючого випромінювання належать: застосування автоматизованого устаткування з дистанційним керуванням; використання витяжних шаф, камер, боксів, що оснащені спеціальними маніпуляторами, які копіюють рухи рук людини; встановлення захисних екранів.

Санітарно-гігієнічні заходи передбачають: забезпечення чистоти приміщень, включаючи щоденне вологе прибирання; улаштування припливно-витяжної вентиляції з щонайменше 5-кратним повітрообміном; дотримання норм особистої гігієни, застосування засобів індивідуального захисту.

До лікувально-профілактичних заходів належать: попередній та періодичні медогляди осіб, які працюють з радіоактивними речовинами; встановлення раціональних режимів праці та відпочинку; використання радіопротекторів — хімічних речовин, що підвищують стійкість організму до іонізуючого опромінення.

Захист працівника від негативного впливу джерела зовнішнього іонізуючого випромінювання досягається шляхом:

— зниження потужності джерела випромінювання до мінімально необхідної величини («захист кількістю»);

— збільшення відстані між джерелом випромінювання та працівником («захист відстанню»);

— зменшення тривалості роботи в зоні випромінювання («захист часом»);

— встановлення між джерелом випромінювання та працівником захисного екрана («захист екраном»).

Захисні екрани мають різну конструкцію і можуть бути стаціонарними, пересувними, розбірними та настільними. Вибір матеріалу для екрана та його товщини залежить від виду іонізуючого випромінювання, його рівня та тривалості роботи.

Для захисту від альфа-випромінювання немає необхідності розраховувати товщину екрана, оскільки завдяки малій проникній здатності цього випромінювання шар повітря в кілька сантиметрів, гумові рукавички вже забезпечують достатній захист.

Екран для захисту від бета-випромінювання виготовляють із матеріалів з невеликою атомною масою (плексиглаз, алюміній, скло) для запобігання утворення гальмівного випромінювання. Досить ефективними є двошарові екрани: з боку джерела випромінювання розташовують матеріал з малою атомною масою товщиною, що дорівнює довжині пробігу бета-частинок, а за ним — з більшою атомною масою (для поглинання гальмівного випромінювання).

Захист від внутрішнього опромінення досягається шляхом виключення безпосереднього контакту з радіоактивними речовинами у відкритому вигляді та запобігання потраплянню їх у повітря робочої зони.

При роботі з радіоактивними речовинами важливе значення має застосування засобів індивідуального захисту, які запобігають потраплянню радіоактивних забруднень на шкіру та всередину організму, а також захищають від альфа — та, при можливості, від бета-випромінювань.

До засобів індивідуального захисту від іонізуючого випромінювання належать: халати, костюми, пневмокостюми, шапочки, гумові рукавички, тапочки, бахіли, засоби захисту органів дихання та ін. Застосування тих чи інших засобів індивідуального захисту залежить від виду і класу робіт. Так у разі виконання ремонтних і аварійних робіт застосовуються засоби індивідуального захисту короткочасного використання — ізолювальні костюми (пневмокостюми) шлангові чи з автономним джерелом подавання повітря до органів дихання, захисні скафантри тощо. Як правило такі костюми та скафандри мають просвинцеваний захисний шар, що надійно захищає тіло людини від іонізуючого випромінювання, навіть при незначній товщині цього шару.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.