Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Перехідні процеси у найпростіших колах першого порядку.






7.2.1.Реакція - кола на підключення до нього джерела ЕРС. Схема кола показана на рис.7.1. У мить часу ключ замикається і до кола підключається джерело . Згідно першого закону Кірхгофа для кола після комутації

.

Використовуючи компонентні рівняння для резистора та конденсатора - та - і, враховуючи, що отримаємо

, (7.7)

де - постійна часу кола. Рівняння (7.7) є диференціальним рівнянням першого порядку відносно змінної стану .

У характеристичного рівняння є один корінь , тому загальний розв’язок однорідного диференціального рівняння ()

. (7.8)

Частинний розв’язок неоднорідного рівняння характеризує напругу на конденсаторі у стаціонарному стані після комутації. І щоб знайти її необхідно знати характер поведінки . Розглянемо два випадки.

1. Комутація кола на джерело постійної ЕРС, тобто . Тепер стає очевидним, що у стаціонарному стані, вимушена складова перехідної напруги буде рівною напрузі джерела живлення (адже саме до такої напруги зарядиться конденсатор), тому

,

а загальний розв’язок неоднорідного рівняння -

.

Для знаходження сталої інтегрування скористаємося законом комутації (7.6): . У результаті отримаємо . Таким чином напруга на конденсаторі під час перехідного процесу змінюється за законом

. (7.9)

Струм у колі після комутаціїї -

.

Напруга на резисторі -

.

Графіки залежності перехідних напруг на конденсаторі та резисторі від часу показані на рис.7.2.

Як довго триває перехідний процес? Теоретично - нескінчено довго. На практиці вважають, що перехідний процес триває час , на протязі якого вільна складова перехідної величини зменшується до рівня рівного 0.1 від свого початкового значення, тобто . Розв’язком даного рівняння є величина . Отже, можна вважати (із запасом), що перехідні процеси завершуються за час .

2. Комутація кола на джерело гармонічної ЕРС, тобто . Вимушену складову перехідної напруги на конденсаторі знайдемо методами аналізу складних кіл при гармонічному збуджені у стаціонарному стані:

,

де

, а .

Таким чином

.

Враховуючи початкові умови, знайдемо сталу інтегрування : , звідки . Отже

. (7.10)

Із (7.10) випливає, що при другий доданок у квадратних дужках рівний нулеві, що вказує на те, що перехідна напруга в такому випадку відсутня, отже напруга на конденсаторі відразу набуває стаціонарного значення:

.

Якщо комутація відбувається в мить часу, коли (тут -ціле число), то множник біля експоненти дорівнює . І на початку перехідного процесу (), амплітуда напруги на конденсаторі у двічі перевищує стаціонарне значення . Не врахування цього може привести до виході із ладу конденсатора.

 

7.2.2. Реакція - кола на стрибок напруги. Схема кола показана на рис.7.3. У мить часу ключ замикається і підключає до кола джерело постійної ЕРС. Для кола після комутації за другим законом Кірхгофа . Оскільки , а то рівняння для змінної стану набуває вигляду: .

Характеристичне рівняння має один корінь тому

є загальним розв’язком однорідного диференціального рівняння. Величина називається постійною часу -кола.

Вимушена складова перехідного струму описує стаціонарний режим. У даному випадку струм у колі з часом наближіється до значення . Остаточно, загальний розв’язок неоднорідного диференціального рівняння:

.

Оскільки до комутації струм у колі відсутній, то нульові початкові умови дозволяють легко знайти сталу інтегрування : . Остаточно

.

Напруга на резисторі під час перехідного процесу

.

Напруга на індуктивній котушці

.

Як довго тривають перехідні процеси? Теоретично -нескінченно довго, а на практиці - . Графіки залежностей напруг від часу на пасивних елементах - кола показані на рис.7.4.

 

7.3. Перехідні процеси у колах першого порядку. Спрощений підхід.

Розглянуті приклади дозволяють зробити висновок, що перехідний процес в колах будь якої складності з одним конденсатором або однією індуктивною котушкою описуються диференціальним рівнянням першого порядку відносно змінної стану. Структура загального розв’язку такого рівняння має вигляд

. (7.11)

Отже задача знаходження змінної стану зводиться до:

1. Знаходження постійної часу кола ;

2. Знаходження сталої інтегрування ;

3. Знаходження стаціонарного значення після комутації .

З іншого боку, по відношенню до вітки з конденсатором чи індуктивною котушкою коло після комутації можна замінити еквівалентним генератором з параметрами та . І задача визначення параметрів у розв’язку (7.11) зводиться до аналізу перехідних процесів у найпростішому - чи -колі. Постійна часу кола у таких випадках буде рівною (для кола з конденсатором) та (для кола з індуктивною котушкою). Стаціонарне значення знаходимо із аналізу найпростішого кола після комутації. Оскільки є змінною стану, то ця величина змінюється неперервно під час комутації, тобто . Звідки - . Нарешті -

. (7.12)

Таким чином з допомогою формули (7.12) можна аналізувати перехідні процеси у колах з одним динамічним елементом не звертаючись до диференціального рівняння.

Як приклад використання формули (7.12) розглянемо перехідні процеси у найпростішому -колі при підключенні до нього джерела гармонічної ЕРС з (рис.7.3). Змінною стану у даній задачі виступає струм в індуктивній котушці, отже

.

Параметри еквівалентного генератора: , . Постійна часу кола - . Вимушена складова струму у колі після комутації

,

де - , а .

Очевидно, що , а . Отже перехідний струм у колі -

.

Якщо комутація відбувається у мить часу коли , то струм у колі відразу набуває стаціонарного значення. Якщо під час комутації виконується умова , то на початку прехідного процесу при дотриманні умови амплітуда струму в колі у двічі буде перевищувати стаціонарне значення . Отже конструктивні особливості індуктивної котушки повинні враховувати факт перевищення у двічі стаціонарного значення струму.

 
 

Приклад 7.1. Для кола, схема якого показана на рис.7.5, а, знайти струм у вітці з резистором після розмикання ключа К. Параметри елементів кола вважати відомими.

Рішення. Для кола після комутації (див.рис.7.5, б) запишемо рівняння на основі першого закону Кірхгофа:

. (7.13)

Підставимо значення струмів та у рівняння (7.13):

. (7.14)

Отримане рівняння – неоднорідне лінійне диференціальне рівняння першого порядку відносно змінної стану . Легко помітити, що вимушена складова перехідної напруги буде рівною . Характеристичне рівняння, що відповідає диференціальному рівнянню (7.14) має один корінь - . Отже вільна складова перехідної напруги - , а перехідна напруга -

.

Для знаходження сталої інтегрування скористаємося законом комутації (початковими умовами) : . Звідки - і загальний розв’язок диференціального рівняння (7.14) буде наступним - . Оскільки резистор та конденсатор з’єднані паралельно то .

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.