Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Канторово множество. Размерность по Хаусдорфу






Билет №2

Канторово Множество

- подмножество отрезка [0, 1] числовой оси, состоящее из всех чисел вида где ei равно 0 или 2. Построено Г. Кантором (G. Cantor, 1883). Геометрич. его описание (см. рис.): из отрезка [0, 1] выбрасывается его средняя треть - интервал, затем из оставшихся отрезков и выбрасываются интервалы и из оставшихся четырех отрезков также выбрасываются их средние трети, и т. д.; то, что останется после выбрасывания всех этих интервалов (смежных интервалов), суммарная длина к-рых равна 1, и есть канторово совершенное множество (Кантора множество; канторов дисконтинуум); оно нигде не плотно на числовой прямой, имеет мощность континуума. С топологич. точки зрения К. м.- нульмерный совершенный (т. е. без изолированных точек), компакт, причем с точностью до гомеоморфизма существует единственный такой компакт. Все ограниченные совершенные нигде не плотные множества на числовой прямой суть подобные множества. К. м. гомеоморфно счетной степени простого двоеточия Dи является пространством топологич. группы К. м. универсально в двух смыслах: во-первых, всякое нульмерное пространство со счетной базой гомеоморфно подмножеству К. м.; 2) во-вторых, всякий компакт является непрерывным образом К. м. (теорема Александрова). Эта теорема кладет начало теории диадических бикомпактов и показывает, что многие компакты похожи друг на друга с функциональной точки зрения. Так, в частности, все совершенные компакты имеют одинаковые булевы алгебры всех канонич. открытых множеств. Существование специальных отображений К. м. на компакты позволяет доказать, что банаховы алгебры всех непрерывных функций на двух произвольных совершенных компактах (напр., на отрезке и квадрате) линейно гомеоморфны. Далее, К. м. и возможность отобразить его на произвольный компакт лежат в основе построения многих примеров, интересных с точки зрения топологии и теории функций. Одним из них является так наз. канторова лестница- график непрерывного монотонного отображения отрезка [0, 1] на себя, производная к-рого определена и равна нулю на множестве меры 1. Хотя стандартное К. м. имеет меру нуль, существуют нигде не плотные на отрезке совершенные компакты меры, сколь угодно близкой к единице. Лит.: [1] Александров П. С, Введение в теорию множеств и общую топологию, М., 1977. В. В. Федорчук

Ка́ нторово мно́ жество есть один из простейших фракталов, подмножество единичного отрезка вещественной прямой, которое является классическим примером «плохого множества» в математическом анализе. Описано в 1883 году Г. Кантором.

Классическое построение

Из единичного отрезка удалим среднюю треть, т. е. интервал . Оставшееся точечное множество обозначим через . Множество состоит из двух отрезков; удалим теперь из каждого отрезка его среднюю треть, и оставшееся множество обозначим через . Повторив эту процедуру опять, удаляя средние трети у всех четырёх отрезков, получаем . Дальше таким же образом получаем . Обозначим через пересечение всех . Множество называется Канторовым множеством.

С помощью троичной записи

Канторово множество может быть также определено как множество чисел от нуля до единицы, которые можно представить в троичной записи с помощью только нулей и двоек. При этом следует отметить, что число принадлежит Канторовому множеству, если у него есть одно такое представление, например так как .

Как аттрактор

Рассмотрим все последовательности точек такие, что для любого n,

или .

Тогда множество пределов всех таких последовательностей является Канторовым множеством.

Свойства

§ Канторово множество является нигде не плотным совершенным множеством.

§ В частности, оно замкнуто.

§ Канторово множество континуально. В частности,

§ Канторово множество не счётно

§ Канторово множество имеет топологическую размерность 0.

§ Канторово множество имеет промежуточную (т.е. не целую) Хаусдорфову размерность равную . В частности,

§ Канторово множество имеет нулевую меру Лебега.

Размерность Хаусдорфа — естественный способ определить размерность подмножества в метрическом пространстве. Размерность Хаусдорфа согласуется с нашими обычными представлениями о размерности в тех случаях, когда эти обычные представления есть. Например, в трёхмерном евклидовом пространстве хаусдорфова размерность конечного множества равна нулю, размерность гладкой кривой — единице, размерность гладкой поверхности — двум и размерность множества ненулевого объёма — трём. Для более сложных (фрактальных) множеств размерность Хаусдорфа может не быть целым числом.

Определение размерности Хаусдорфа состоит из нескольких шагов. Пусть — ограниченное множество в метрическом пространстве .

-покрытия

Пусть . Не более чем счётный набор подмножеств пространства будем называть -покрытием множества , если выполнены следующие два свойства:

§

§ для любого : (здесь и далее означает диаметр множества ).

] -мера Хаусдорфа

Пусть . Пусть — покрытие множества . Определим следующую функцию, в некотором смысле показывающую «размер» этого покрытия: .

Обозначим через «минимальный размер» -покрытия множества : , где инфимум берётся по всем -покрытиям множества .

Очевидно, что функция (нестрого) возрастает при уменьшении , поскольку при уменьшении мы только сжимаем множество возможных -покрытий. Следовательно, у неё есть конечный или бесконечный предел при :

.

Величина называется -мерой Хаусдорфа множества .

[Свойства -меры Хаусдорфа

§ -мера Хаусдорфа является борелевской мерой на .

§ с точностью до умножения на коэффициент: 1-мера Хаусдорфа для гладких кривых совпадает с их длиной; 2-мера Хаусдорфа для гладких поверхностей совпадает с их площадью; -мера Хаусдорфа множеств в совпадает с их -мерным объёмом.

§ убывает по . Более того, для любого множества существует критическое значение , такое, что:

§ для всех

§ для всех

Значение может быть нулевым, конечным положительным или бесконечным.

Определение размерности Хаусдорфа

Размерностью Хаусдорфа множества называется число из предыдущего пункта.

]Примеры

Для самоподобных множеств размерность Хаусдорфа может быть вычислена явно. Неформально говоря, если множество разбивается на частей, подобных исходному множеству с коэффициентами , то его размерность является решением уравнения . Например,

§ размерность множества Кантора равна (разбивается на две части, коэффициент подобия 1/3),

§ размерность треугольника Серпинского — (разбивается на 3 части, коэффициент подобия 1/2),

§ размерность кривой дракона — (разбивается на 2 части, коэффициент подобия ).

[править]Свойства размерности Хаусдорфа

§ Размерность Хаусдорфа любого множества не превосходит нижней и верхней размерностей Минковского.

§ Размерность Хаусдорфа не более чем счётного объединения множеств равна макcимуму из их размерностей. В частности, добавление счётного множества к любому множеству не меняет его размерности.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.