Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Цифровая фильтрационная модель






 

Цифровая фильтрационная модель представляет объект в виде двухмерной или трехмерной сети ячеек, каждая из которых характеризуется набором идентификаторов и параметров, как и в геологической модели, но дополнительно включает динамические характеристики пластовых процессов и промысловые данные по скважинам. Это данные о конструкции скважин, месячные данные о дебитах (расходах) фаз, режиме работы, данные о пластовом и забойном давлении, ГТМ.

Помимо наличия дополнительных параметров фильтрационная модель может отличаться от геологической модели большей схематизацией строения, объединением нескольких геологических объектов в единый объект моделирования.

Фильтрационное моделирование выполняется с помощью расчетных программ, которые реализуют численное решение системы уравнений, описывающих фильтрацию пластовых флюидов и закачиваемых агентов в пласте с учетом их взаимодействия с породой, межфазных явлений и фазовых переходов.

Упрощение геометрического строения, осуществляемое при переходе от геологической модели к фильтрационной модели, обусловлено необходимостью проводить компьютерные расчеты пластовых процессов и показателей разработки при экономически допустимых затратах машинного времени.

 

3.1. Математические модели расчета фильтрационных

процессов на месторождении

 

К любой фильтрационной (гидродинамической) модели предъявляются общие требования:

1. Адекватность процессу фильтрации в пласте. Учет всех необходимых факторов. Универсальность модели.

2. Большая размерность пространственной сетки, аппроксимирующей реальное месторождение.

3. Простота и удобство пользования моделью. Сервисная визуализация входных и выходных данных.

4. Приемлемое время при расчете вариантов на компьютере.

5. Использование модели, как для прогнозных расчетов, так и для коррекции геологической модели пласта при воспроизведении истории разработки и адаптации модели.

6. Замыкание фильтрационной модели с алгоритмами технологических и экономических расчетов. Получение регламентных таблиц и графиков.

7. Расчеты по прогнозу технологических показателей разработки должны проводиться с использованием фильтрационных программ, надежность которых подтверждена предварительным тестированием с помощью первого и седьмого тестов SPE - Society of Petroleum Engineers [125? 131]. От качества моделирующей программы сильно зависит достоверность адаптации модели по истории разработки, точность расчетов уровней добычи нефти, обводненности продукции скважин, коэффициентов извлечения нефти и других технологических показателей

8. Зарубежные программы должны иметь документацию на русском языке.

К настоящему времени разработано большое количество программ для фильтрационного моделирования. Наибольшее распространение получили программы трехфазной фильтрации, известные как программы нелетучей нефти (black oil model). В этих программах рассматриваются три фильтрующиеся флюида: вода, нефть, газ - без учета их реального компонентного состава. Эти программы относятся к первой группе.

Вторую группу образуют программы многокомпонентной (композиционной) фильтрации, когда учитывается изменение компонентного состава флюидов и их физических свойств. В процессе многокомпонентной фильтрации предусматривается учет массообмена вследствие фазовых превращений. При этом уравнение неразрывности потоков должно быть соблюдено для каждого компонента.

В обеих группах программ свойства пластов и фильтрующихся флюидов зависят от давления. В особую группу выделяются программы неизотермической фильтрации, когда свойства флюидов зависят от температуры.

 

3.2. Исходные данные для построения цифровых

фильтрационных моделей

 

Этап создания цифровых фильтрационных моделей начинается после построения адресной геолого-математической модели и проведения необходимого анализа геолого-промысловой информации и данных геофизического контроля об объектах разработки.

Исходные данные разделяются на следующие основные группы:

- данные о структуре моделируемого объекта (геометрические), включающие в себя данные о контактах флюидов (ГВК, ГНК, ВНК);

- сведения о количестве геологических слоев и распределении фильтрационно-емкостных параметров в них (коэффициентов пористости, проницаемости);

- информация о слоепересечениях, интервалах перфорации, включая инклинометрические данные);

- данные о первоначальном насыщении коллекторов фазами, начальном пластовом давлении и давлении насыщения продуктивных пластов;

- результаты анализа компонентного и фракционного состава пластовых флюидов и пластовых пород, РVТ свойства флюидов;

- исследования и определения абсолютных проницаемостей и относительных фазовых проницаемостей, кривых капиллярного давления, межфазного натяжения и данные о напряженном состоянии пласта и упругоемкости пород пласта;

- промысловые данные о состоянии фонда скважин, дебитах и приемистости, обводненности добываемой продукции, газовом факторе;

- данные контроля за разработкой (замеры текущего пластового давления, результаты исследования скважин на стационарном и нестационарном режимах, определения скин-фактора, данные ГИС-контроля, дебитометрии и расходометрии);

- гидрогеологические и геокриологические данные о залежи.

Решение о выборе математической модели, наиболее адекватно описывающей процесс разработки залежи, принимается после анализа приведенных выше исходных данных с учетом режимов разработки нефтяной (газонефтяной) залежи.

Упомянутые выше первые три группы данных для гидродинамической модели передаются из ранее построенной геолого-математической модели, а именно:

а) структурно-геометрические параметры пласта в сеточном виде:

- данные о системе и ориентации координатных осей пространства;

- число ячеек (узлов) по осям координат X, Y и Z;

- для равномерной прямоугольной сетки - размеры блоков ячеек X, Y, и Z;

- для неравномерной прямоугольной сетки - размеры блоков (ячеек) по координатам X, Y и Z;

- в случае неравномерной сетки с геометрией Corner Point (угловой точки) - файл, в котором приведены соответствующие данные;

- распределение коллектор - неколлектор в сеточном виде (дополнительно могут быть переданы поля толщин глинистых перемычек);

- геометрические координаты нарушений (разломы и т.д.) пласта;

б) сеточные фильтрационно-емкостные параметры пласта:

- поле коэффициента эффективной насыщенной толщины пласта и/или эффективные насыщенные толщины;

- поле коэффициента открытой пористости;

- поля (тензоры) абсолютной проницаемости в направлении X, Y и Z.

в) в сеточном виде - данные об инклинометрии, слоепересечениях, интервалах перфорации и координатах устьев скважин;

г) сеточные данные о характере насыщения объекта:

- расположение контуров нефте- и газоносности;

- поле (сетка) эффективных нефтенасыщенных толщин;

- поле (сетка) эффективных водонасыщенных толщин;

- поле (сетка) эффективных газонасыщенных толщин;

- поля (сетки) нефте-, водо- и газонасыщенностей.

К промысловым и аналитическим (лабораторным) данным для фильтрационного моделирования относятся:

а) промысловые данные:

- идентификатор (номер) скважины;

- сеточные координаты скважин (передаются из геолого-математической модели);

- данные о накопленном и годовом отборах (нагнетании) по скважинам и по фазам (нефть, вода, газ), дебитах (приемистости) скважин по фазам;

- фактический и приведенный радиусы скважин, скин-фактор;

- устьевые, забойные и пластовые давления с указанием интервалов и дат замеров;

- дебиты и коэффициенты продуктивности;

- начальные пластовые давления и температура;

- технологические режимы работы скважин;

- число рабочих дней скважин по месяцам (кварталам, годам);

- мероприятия, проведенные на скважине (капитальные ремонты, ОПЗ, РИР);

- результаты и обработка данных гидродинамических исследований скважин (на стационарных режимах, КВД, КВУ);

- данные о дебитометрии, расходометрии, термометрии;

- данные ГИС-контроля за разработкой;

- сведения о техническом состоянии скважин и режимах их работы (способы подъема жидкости, характеристики применяемых насосов, высота их подвески, состояние цементного камня, данные по перфорации и т.д.);

- данные о кустовых пунктах сбора продукции;

б) аналитические данные:

- для пластовой нефти - компонентный и фракционный состав пластовой и сепарированной нефти с указанием физико-химических характеристик фракций, компонентный состав газа сепарации, начальное газосодержание, давление насыщения при пластовой температуре, динамика объемного коэффициента, газосодержания, коэффициента сжимаемости и др. по результатам дифференциального разгазирования;

- для свободного газа (газовая «шапка») - компонентный состав до бутанов включительно с указанием молярной доли группы С5+ высшие, физико-химическая характеристика де-бутанизированного конденсата (группы С5+ высш.), потенциальное содержание группы С5+ высшие в пластовом газе;

- физико-химические свойства пластовой воды (вязкость, коэффициент сжимаемости, плотность, минерализация и др.);

- определения коэффициентов пористости и абсолютной проницаемости по образцам горной породы (кернам);

- определенные лабораторными испытаниями относительные фазовые проницаемости и капиллярные давления.

Входными данными для фильтрационного моделирования являются также результаты анализа разработки, включающие:

- анализ состояния фонда скважин;

- распределение добывающих скважин по дебитам нефти, обводненности и загазованности добываемой продукции;

- анализ причин отклонения текущих показателей разработки от проектных;

- построение характеристик вытеснения.

При моделировании наклонных и горизонтальных скважин дополнительно задаются:

- траектория наклонной и горизонтальной скважины и длина наклонного и горизонтального ствола, слоепересечения коллекторов пласта;

- интервалы притоков пластовых флюидов.

Данные, приведенные выше, достаточны для построения фильтрационных моделей нелетучей нефти типа Маскета-Мереса (или black oil model), применительно к трехфазной фильтрации (нефть, газ, вода). При этом возможно растворение газовой фазы в нефтяной и водной фазах, а нефтяной - в газовой фазе.

При построении более сложных моделей фильтрации для методов увеличения нефтеотдачи (МУН), описания трещиновато-пористого коллектора и учета многокомпонентности системы пластовых флюидов необходимо применение соответствующей теории и дополнительных исходных данных.

 

3.3. Требования к точности исходных данных

 

Исходные данные для фильтрационного моделирования по их происхождению разделяются на три типа:

- передаваемые из геолого-математической модели;

- полученные в результате промысловых исследований и испытаний;

- определяемые в лабораторных исследованиях.

Точность данных первого типа зависит от погрешности:

- геофизических (каротажных) исследований;

- данных сейсморазведки 2D и 3D;

- определения структурно-геометрических параметров объекта разработки;

- определения контуров нефте- и газоносности;

- выделения коллекторов продуктивного пласта;

- определения интервалов перфорации.

Очевидно, что степень достоверности перечисленных данных зависит от количества контрольных точек, в которых получена информация о пласте.

Объем части пласта, из которой отбирается керновый материал, подвергаемый лабораторным исследованиям, находится в диапазоне от 0, 00004 до 0, 00016 %, а по геофизическим данным от 0, 022 до 0, 088 % от объема пласта. Все данные имеют различные погрешности в диапазоне от 5 до 20 %, поэтому интегральную погрешность данных, получаемых из геолого-математической модели, можно оценить в 20 % (приемлемая погрешность определения балансовых запасов углеводородов).

Точность данных второго типа определяется, прежде всего, результатами гидродинамических испытаний скважин, охваченный объем пласта колеблется от 33 до 100%. Поэтому данные этого типа являются более достоверными и приемлемая погрешность оценивается в интервале 10 – 20 % (гидропроводность, пьезопроводность, скин-фактор).

Наиболее точно определяются данные третьего типа в лабораторных условиях.

Это данные определения вязкости пластовых флюидов (погрешности до 2 - 3%), фазового равновесия (до 10%), относительных фазовых проницаемостей и капиллярного давлений (10%) и т.д. В то же время некоторые из этих данных охватывают очень небольшую часть продуктивного пласта, поэтому интегральная погрешность оценивается в 10 - 20%.

В итоге общая интегральная погрешность входных данных для построения фильтрационной модели составляет не менее 15 - 20%.

Этим обстоятельством определяется необходимость проведения исследовательских работ по уточнению коллекторских и других параметров модели объекта разработки с использованием фактических данных по отборам и закачке флюидов в скважинах.

 

3.4. Создание фильтрационной модели

 

Для проведения фильтрационных расчетов с целью прогноза динамики технологических показателей и оптимизации системы разработки необходимо поставить цель исследования, выбрать объект (объекты) моделирования, тип и размерность модели и соответствующие программные средства.

 

3.4.1. Постановка целей исследования

Фильтрационная модель является инструментом для исследования самых разнообразных вопросов на конкретной залежи с помощью численных расчетов на компьютере:

1. Оценка запасов по пластам и в целом по залежи.

2. Составление ТЭО и проектов разработки месторождения.

3. Анализ и минимизация риска разработки.

4. Исследование поведения скважин и групп скважин.

5. Изучение процессов фильтрации флюидов или их компонентов при разных воздействиях на пласт.

6. Выбор или совершенствование технологии разработки месторождения.

7. Выбор или реконструкция системы расстановки скважин.

8. Выбор оптимальных режимов работы скважин. Планирование добычи.

9. Обеспечение наибольших текущих дебитов нефти и/или наибольшего коэффициента нефтеизвлечения. Оптимизация показателей добычи.

10. Уточнение свойств пласта и флюидов.

11. Поиск наилучших интервалов вскрытия.

12. Определение остаточных запасов, застойных зон на конкретные моменты времени.

13. Обоснование стратегии и тактики доразработки месторождения.

14. Управление внутрипластовыми потоками флюидов.

Для обеспечения эффективности проведения моделирования должна быть четко сформулирована и обоснована проблема, имеющая важное технико-экономическое значение. В качестве цели моделирования выбирается один или несколько из перечисленных пунктов или формулируется иная цель. В данном разделе с учетом технического задания приводится обоснование выбора цели моделирования.

 

3.4.2. Определение области исследования

Область исследования - это непосредственно объект, являющийся целью моделирования. Для выполнения последующих действий по созданию цифровой модели из геолого-математической модели передаются: размер моделируемой области, линзовидность, прерывистость, нарушения, внешняя область, количество скважин.

Месторождение (залежь) может рассматриваться как единое целое или, в случае его больших размеров, разбивается на участки (зоны) при значительной изменчивости геолого-физических свойств по площади. Эти участки характеризуются по фазовому состоянию флюидов как чисто нефтяные (ЧНЗ), газонефтяные (ГНЗ), водонефтяные (ВНЗ), газоводонефтяные (ГВНЗ) зоны. Участки также могут различаться по относительным фазовым проницаемостям.

Определяются границы участков, и создается база граничных условий, которая заполняется данными в процессе укрупненного математического моделирования всего объекта. Исходные данные для моделей участков поступают из баз геолого-промысловой, геолого-геофизической информации, а также из базы граничных условий. Далее решение задачи моделирования отдельных участков аналогично решению задачи моделирования для всего объекта.

В разделе приводится обоснование и схема выделения расчетных участков.

 

3.4.3. Выбор типа модели

В зависимости от физико-химических свойств насыщающих пласт флюидов и нагнетаемых агентов выбирают двухфазную, трехфазную или многокомпонентную (композиционную) модель фильтрации. При выборе типа модели должен также учитываться характер моделируемого процесса разработки.

Для поддержания пластового давления наиболее часто применяют заводнение или закачку газа. Для моделирования процессов вытеснения нефти водой при давлениях выше давления насыщения нефти газом обычно достаточно использовать двухфазную математическую модель (трехфазную модель при постоянстве газового фактора). При разработке газонефтяных залежей или при закачке газа в пласт для учета подвижности всех фаз флюидов необходима модель трехфазной фильтрации нефти, газа и воды.

Для большинства терригенных коллекторов с нефтью, подчиняющейся обобщенному закону Дарси и в условиях исключающих фазовые переходы типа выпадения парафина, применима 3D-модель изотермической трехфазной фильтрации (нефть, вода, газ) типа Маскета-Мереса. Для кавернозно-трещиновато-пористых коллекторов (карбонатные отложения и др.) может применяться модель двойной пористости, проницаемости типа Баренблатта-Желтова-Кочиной.

Если осуществляется вытеснение смешивающимися флюидами, модель следует модифицировать так, чтобы она воспроизводила процесс смешивания закачиваемой оторочки флюида с углеводородными фазами. При исследовании процесса заводнения с применением полимеров, добавляемых к воде, данные об изменении проницаемости в зависимости от насыщенности корректируются с учетом влияния полимеров, в результате чего изменяется характер кривых относительных проницаемостей.

Для расчета процесса разработки и методов увеличения нефтеотдачи газоконденсатных пластов, процесса водогазовой репрессии необходимо рассматривать нефть и газ как смесь компонентов, то есть использовать композиционные модели. Для описания фильтрационных течений многокомпонентных смесей может применяться модель Желтова-Розенберга.

Для моделирования неизотермического течения системы пластовых флюидов (термические МУН) необходимо применение модели теплопереноса в пласте и окружающих его породах.

Для описания более сложных моделей могут вводиться дополнительно:

расчет химической кинетики пластовой системы;

расчет динамики напряжений и деформаций резервуара с учетом фактической реологии слагающих горных пород и тектонических напряжений.

В разделе дается обоснование выбора типа модели.

 

3.4.4. Обоснование размерности модели

Современные математические модели позволяют выполнять довольно точные гидродинамические расчеты, учитывающие большинство факторов, определяющих картину фильтрации. Это - многопластовый характер эксплуатационных объектов, зональная и слоистая неоднородность пластов, их линзовидность и прерывистость, интерференция скважин, характер перемещения пластовых флюидов при различном порядке ввода и отключения скважин и т.п.

Для решения задачи извлечения нефти с учетом перечисленных факторов в ПДГТМ, как правило, используются трехмерные модели. В 3D-моделях в качестве основы обычно используется 3D-сейсмика и/или данные эксплуатационного бурения.

Двухмерные модели используются в качестве временной меры, когда спрогнозировать закономерности изменения ФЕС в объеме резервуара с удовлетворительной точностью не представляется возможным вследствие низкой плотности геолого-геофизических наблюдений на поисково-разведочной стадии.

Двухмерные модели могут использоваться при исследованиях значительных по размерам многоскважинных систем (более 1000 скважин) на промежуточном этапе для определения граничных условий для трехмерных моделей отдельных участков месторождения.

Для каждого случая применения двухмерной модели должно быть приведено обоснование.

Недопустимо применение плоских 2D математических моделей для определения показателей разработки водонефтяных зон, нефтегазоконденсатных, водоплавающих залежей нефти и газа, а также залежей с резко (более чем в 3 - 5 раз) изменяющимися вдоль вертикальной координаты коллекторскими свойствами.

При исследовании процессов конусообразования рекомендуется использовать модель r-z., которая предназначена для моделирования одиночной скважины с радиальной симметрией и неоднородностью пласта в вертикальном направлении. Модели конуса применяют для воспроизведения результатов исследований по кривым восстановления давления в скважинах. Этот способ также применяют при повторении истории разработки месторождения для того, чтобы определить исходные значения проницаемости.

 

3.5. Этапы построения фильтрационной модели

 

При создании фильтрационной модели должны быть выполнены следующие действия:

- Создать сетку модели и схему выделения слоев.

- Определить свойства пласта.

- Определить свойства пластовых флюидов.

- Задать начальные условия, например, контакты флюидов и начальные давления.

- Расположить скважины и смоделировать перфорации.

- Задать дебиты по истории разработки и ограничения добычи для прогноза.

- Провести расчеты.

- Проанализировать результаты.

Рассмотрим последовательно действия по созданию модели.

 

3.5.1. Создание сетки и схемы выделения слоев

При построении сетки на моделируемом объекте следует руководствоваться следующими принципами:

1. Обеспечить учет всех крупномасштабных деталей строения пласта (неоднородность, слоистость, выклинивания, сбросы).

Дается обоснование количества и принципа выделения слоев, исходя из представлений о неоднородности объекта по разрезу.

2. Для обеспечения точности расчетов, между скважинами рекомендуется размещать не менее трех-пяти ячеек сетки фильтрационной модели. Данная рекомендация основывается на опыте моделирования реальных объектов.

3. Обоснование оптимальных размеров расчетных блоков рекомендуется проводить с помощью анализа чувствительности модели к ее размерности. Окончательное количество ячеек модели определяется из условия достижения сходности результатов расчетов при измельчении разностной сетки.

4. Желательна ориентация сетки по направлению осей тензора проницаемости, чтобы ориентировать сетку по потокам.

В разделе приводится схема размещения скважин на разностной сетке с учетом расположения ВНК и ГНК.

 

3.5.2. Характеристика пласта

Каждой ячейке сетки фильтрационной модели должно быть присвоено значение параметра пласта:

- общей толщины;

- эффективной толщины;

- эффективной пористости,

- проницаемости: одно значение для изотропного коллектора и три (шесть) значения для анизотропного коллектора;

- насыщенности нефтью, водой и газом;

- абсолютной глубины кровли.

При совпадении сеток геологической и фильтрационной модели ввод данных выполняется непосредственно из геологической модели.

Если сетки моделей не совпадают, создание и наполнение фильтрационной сетки осуществляется программными средствами преобразования геологической модели с использованием методов осреднения и расчета эффективных параметров. Основной задачей осреднения является получение эффективных характеристик, соответствующих масштабу ячейки фильтрационной модели.

При определении проницаемости и пористости по керну и по геофизическим исследованиям скважин характерный масштаб осреднения определяется сантиметрами. Для получения по этим данным эффективных характеристик, соответствующих масштабам расчетных ячеек фильтрационной модели, которые составляют обычно десятки и сотни метров, используются статистические методы.

При этом для получения эффективных характеристик объемных параметров (толщины, пористости) могут быть использованы их среднеарифметические (средневзвешенные) значения. Для осреднения проницаемости, которая имеет направленный (тензорный) характер, должны использоваться их среднегармонические значения, определяемые как суммы гидропроводностей по данному направлению. Для решения этой задачи разработаны различные модели и методы. Среди них в последние годы получила распространение техника осреднения - upscaling.

В разделе описываются использованные методы определения эффективных параметров и приводятся значения параметров для ячеек сетки.

 

3.5.3. Относительные фазовые проницаемости

и капиллярные давления

Приводятся табличные и графические зависимости относительных фазовых проницаемостей и капиллярных давлений от насыщенности. Для определения капиллярных давлений и кривых относительных фазовых проницаемостей должен проводиться специальный анализ кернов.

3.5.3.1. Относительные фазовые проницаемости. В фильтрационных программах относительные фазовые проницаемости для каждой фазы задаются в виде таблиц или вычисляются по формулам. В таблицах или формулах должны быть определены критические точки: насыщенности, при которых начинают двигаться нефть, вода, газ.

Особое внимание должно быть уделено обоснованию принятых для расчетов модифицированных функций фазовых проницаемостей. С учетом промысловых данных должны быть получены расчетным путем модифицированные фазовые проницаемости, учитывающие неоднородность объекта. На разрабатываемых месторождениях необходимо определять модифицированные фазовые проницаемости непосредственно на объекте по известной динамике добычи нефти, воды и газа из участков, разрабатываемых в первую очередь.

Относительные фазовые проницаемости могут быть различны для разных зон объекта. Могут быть заданы и одинаковые относительные фазовые проницаемости, отличающиеся только критическими точками насыщенности и критическими точками на кривых фазовых проницаемостей. Последний подход известен как масштабирование (scaling) относительных фазовых проницаемостей и требует помимо ввода в компьютер таблиц фазовых проницаемостей еще и ввода массивов критических точек.

3.5.3.2. Функции капиллярного давления. При численном моделировании капиллярное давление задается как функция насыщенности смачивающего флюида и ее направления (пропитка - вытеснение). С увеличением насыщенности смачивающей фазы скачок капиллярного давления уменьшается. Заданному значению насыщенности соответствуют два значения капиллярного давления, величина которых зависит от способа замещения смачивающей фазой. Это явление называется капиллярным гистерезисом. Для трехфазного течения капиллярное давление нефть-вода является функцией водонасыщенности, капиллярное давление нефть-газ - функцией газонасыщенности.

Функции определяются экспериментально. Описание этих функций в виде формул затруднительно, поэтому в фильтрационной модели они задаются в виде таблиц. Существует теоретическая зависимость, связывающая капиллярное давление и относительные фазовые проницаемости, описываемая функцией Леверетта.

 

3.5.4. Свойства флюидов

Приводятся табличные и графические зависимости физико-химических свойств флюидов. При изотермической фильтрации должны быть заданы зависимости вязкости, объемного коэффициента, растворимости как функция давления для каждого из флюидов при пластовой температуре.

В виде таблиц или формул вводятся зависимости параметров от давления:

- вязкость нефти, объемный коэффициент нефти, растворимость газа в нефти и нефти в газе в зависимости от давления при давлении выше и ниже давления насыщения;

- вязкость воды, объемный коэффициент воды и растворимость газа в воде в зависимости от давления;

- вязкость газа и объемный коэффициент газа в зависимости от давления;

- сжимаемость породы в зависимости от давления;

- плотность нефти, газа и воды в стандартных условиях.

При неизотермической фильтрации кроме того задаются зависимости этих параметров от температуры. Эти зависимости достаточно трудно описать в виде формул, поэтому в большинстве гидрогазодинамических программ ввод осуществляется в виде таблиц отдельно для каждого из флюидов.

 

3.5.5. Начальные условия

Задание начальных условий в пласте означает задание распределения давлений и насыщенностей по ячейкам на нулевой момент времени, соответствующий статическому равновесию, при котором скорости фаз равны нулю и давление является функцией глубины благодаря действию капиллярно-гравитационных сил.

Начальные условия могут быть заданы как известные значения в каждой ячейке сетки, так и могут быть рассчитаны с учетом гидростатического равновесия. В разделе описывается способ задания начальных условий и приводятся необходимые исходные данные.

 

3.5.6. Задание условий на границах расчетной области

Дается описание условий на границах моделируемого объекта с учетом выделения отдельных участков.

Моделирование процессов разработки конкретного объекта выполняется при задании условий на скважинах и границах объекта. Возможны следующие условия на границах:

- отсутствие перетоков;

- заданные перетоки;

- заданные давления.

Задание условий на границах замкнутых залежей не вызывает вопросов. В случае моделирования отдельных участков большого нефтяного месторождения, имеющих, как правило, сообщаемость с объектом в целом, возникают трудности. В большинстве случаев приходится выполнять приближенное моделирование залежи в целом, чтобы определить условия на границе интересующего участка во времени, и затем использовать их для подробного моделирования выделенного участка.

 

3.5.7. Моделирование пластовой водонапорной системы

При построении гидродинамической модели объекта определяется объем, активность и степень взаимодействия с залежью законтурной области.

Учет влияния водоносных горизонтов осуществляется аналитическим или численным моделированием.

При аналитическом моделировании выполняется расчет влияния водоносного пласта. Затем вычисленный поток воды учитывается в качестве источника питания для ячейки, имеющей сообщаемость с водоносным горизонтом. Наибольшее распространение получили формулы постоянного (Steady-State), переменного (РОТ) водоносного горизонта и формулы Фетковича или Картера-Трейси.

При численном моделировании пластовой водонапорной системы сетка модели распространяется за пределы контура нефтеносности.

Размер законтурной области модели является предметом исследования, так как обычно неизвестен радиус депрессионной воронки. Размер законтурной области и ее характеристики уточняются при воспроизведении динамики пластового давления по истории разработки.

 

3.5.8. Моделирование скважин

Качество решения поставленной проблемы в большей степени определяется правильностью задания информации о скважинах. Для ввода исходных данных о скважинах в разделе должна присутствовать следующая информация:

1. Координаты скважины на сетке. В случае многопластовой залежи, наклонной или горизонтальной скважины количество координат определяется числом вскрытых ячеек.

2. Номер скважины и принадлежность к группе по критериям управления.

3. Коэффициент эксплуатации.

4. Коэффициент продуктивности.

5. Радиус скважины.

6. Скин-фактор.

7. Режим работы скважины на конкретные даты (достаточно задать часть данных):

- забойное давление;

- давление на устье;

- депрессия;

- дебит нефти;

- дебит воды;

- дебит жидкости;

- дебит газа.

В случаях, когда гидродинамические потери давления в стволе являются значительными, перечисленный набор исходных данных может оказаться недостаточным для использования программы фильтрации. Тогда необходимо применять подпрограммы для моделирования гидродинамических процессов в самой скважине.

3.5.8.1. Задание условий на скважинах по истории разработки. При повторении истории разработки в качестве входных данных по каждой скважине на конкретные даты задаются замеры дебита одной из фаз, дебит жидкости (вода + нефть) или давление из системы данных о добыче, источником которых являются промысловые данные (фонд скважин, вскрытие пластов, месячные эксплуатационные рапорты по скважинам, забойные давления и коэффициенты продуктивности).

Исходные материалы нередко содержат недостоверную информацию. Занесение такой информации, настройка по ней фильтрационной модели или проверка правильности геологической модели недопустимы. Следовательно, поэтому до начала построения модели объекта необходимо тщательно выверить промысловую информацию, используя непосредственно «шахматки» промысла (если они сохранились). Анализ разработки и входных данных по скважинам являются ответственным этапом создания модели пластовой системы.

3.5.8.2. Задание ограничений и управлений работой скважин для прогноза. Скважина может работать в одном из перечисленных выше режимов (п. 3.5.8, п. 7), выбранного в качестве управляющего воздействия. На другие режимы в этом случае могут быть наложены ограничения. Для дебитов фаз устанавливается допустимый верхний предел добычи. Для давления устанавливается нижний предел в добывающих и верхний предел в нагнетательных скважинах. Способ управления на скважине автоматически меняется при достижении одного из пределов. Таких переходов в программах предусматривается большое количество.

Предусматривается ряд дополнительных ограничений на работу скважин:

- обводненность;

- водонефтяной фактор;

- газонефтяной фактор;

- нижний предел дебита нефти или газа;

- минимальное пластовое давление;

- максимальное пластовое давление.

При достижении одного из ограничений скважина будет автоматически закрыта. В некоторых программах такое управление выполнятся в отношении отдельных прослоев и организовано по группам скважин. Скважины, закрытые по достижении ограничения, могут быть включены вновь, если предел больше не нарушается. Закрытие скважины может быть осуществлено полностью или с учетом перетока по стволу скважины, расположенному в связанных слоях.

Автоматическое сокращение дебитов выполняется по достижению верхнего предела, например, максимальной добычи со скважины или группы скважин, при снижении давления в пласте ниже допустимого значения.

Для нагнетательных скважин в некоторых моделях предусматривается ее отключение, если в заданном радиусе все добывающие скважины закрыты.

Автоматическое закрытие скважин «на ремонт» предусматривается по достижению: указанного времени, экономического предела (например, дебита).

Моделирование автоматически прекращается, если все добывающие скважины отключены или заданный срок моделирования закончен. Контроль за разработкой осуществляется в фильтрационных программах автоматически. Проведенные или рекомендованные геолого-технологические мероприятия фиксируются в соответствующих выходных файлах.

 

3.6. Уточнение параметров (адаптация)

фильтрационной модели на основе анализа истории разработки

 

Если рассматриваемое месторождение уже эксплуатировалось в течение некоторого времени, то первым шагом моделирования должно стать воспроизведение существующей истории разработки. В ходе этого процесса добыча из месторождения моделируется на основании существующей геологической модели. Фильтрационная модель корректируется итеративным способом до тех пор, пока она не окажется в состоянии воспроизвести фактическое распределение давления и многофазное течение флюидов.

По истории разработки пласта, его части или первоочередного участка оценивается достоверность выходных параметров и уточняются:

- параметры внешней области;

- геологическая модель и запасы нефти и газа;

- проницаемость и гидропроводность пласта;

- функции модифицированных относительных фазовых проницаемостей;

- функции адсорбции, десорбции.

На основе уточненной фильтрационной модели уточняется первоначально принятая геологическая модель.

В ходе воспроизведения истории может быть уточнена важная информация о наличии непроницаемых барьеров в пласте. Например, может оказаться, что совпадение результатов моделирования и фактических данных достигается лишь при наличии перетоков через плоскость сброса, считавшуюся ранее непроницаемой. В свою очередь это может свидетельствовать о дополнительных запасах нефти на изначально не принимавшихся во внимание участках месторождения.

В процессе повторения истории разработки возможно использование как специальных адаптационных программ по решению обратных задач фильтрации, уточняющих ФЕС пласта в отдельных элементах, так и использование основной модели с уточнением функций относительных фазовых проницаемостей по отдельным областям и элементам. По результатам уточнения должны быть сделаны изменения в базе данных. В процессе адаптации важно использовать максимум всей имеющейся информации.

В этом разделе необходимо:

- привести графики и таблицы невязок расчетных и фактических показателей разработки по пласту в целом и по отдельным скважинам;

- объяснить причины несовпадения тех или иных показателей разработки в целом по пласту и по скважинам;

- привести поля распределения насыщенности нефтью, газом и водой, поля распределения удельных запасов нефти по объекту в целом (при необходимости по гидродинамическим слоям) на начальный момент времени и на дату составления модели.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.