Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Методология научных исследовательских программ 2 страница






(С этой точки зрения, интересно отметить двойственную роль, какую “принцип соответствия” Бора играл в его программе. С одной стороны, это был важный эвристический принцип, способствовавший выдвижению множества новых научных гипотез, позволявших, в свою очередь, обнаруживать новые факты, особенно в области интенсивности спектральных линий.175 С другой стороны, он выступал в роли защитного механизма, позволявшего “до предела использовать понятия классических теорий—механики и электродинамики — несмотря на противоположность между этими теориями и квантом действия”176 вместо того, чтобы настаивать на безотлагательной унификации программы. В этой второй роли принцип соответствия уменьшал степень

проблематичности боровской программы.177)

Разумеется, исследовательская программа квантовой теории в целом была “привитой программой” и поэтому вызывала неприязнь у физиков с глубоко консервативными взглядами, например, у Планка. По отношению к “привитой программе” вообще возможны две крайние и равно нерациональные позиции.

Консервативная позиция заключается в том, что развитие новой программы должно быть приостановлено до тех пор, пока не будет каким-то образом устранено противоречие со старой программой, затрагивающее основания обеих программ: работать с противоречивыми основаниями иррационально. “Консерваторы” направляют основные усилия на устранение противоречия, пытаясь объяснить (аппроксимативно) постулаты новой программы, исходя из понятий старой программы; они находят иррациональным развитие новой программы, пока попытки такой редукции не завершатся успешно. Планк избрал именно такой путь. Успеха он не достиг, несмотря на десять лет тяжелого труда.178 Поэтому замечание М. Лауэ о том, что 14 декабря 1990 г., когда был прочитан знаменитый доклад Планка, следует считать “днем рождения квантовой теории”, не совсем верно; этот день был днем рождения редукционной программы Планка. Решение идти вперед, допуская хотя бы временно противоречие в основаниях, было принято Эйнштейном в 1905 г., но даже он заколебался, когда в 1913 г. Бор снова вышел вперед.

Анархическая позиция по отношению к привитым программам заключается в том,

что анархия в основаниях возводится в ранг добродетели, а (слабое) противоречие понимается либо как фундаментальное природное свойство, либо как показатель конечной ограниченности человеческого познания; такая позиция была характерна для некоторых последователей Бора.

Рациональная позиция лучше всего представлена Ньютоном, который некогда стоял перед проблемами, в известном смысле похожими на обсуждаемую. Картезианская механика толчка, к которой была первоначально привита механика Ньютона, находилась в (слабом) противоречии с ньютоновской теорией гравитации. Ньютон работал как над своей положительной эвристикой (и добивался успеха), так и над редукционистской программой (без успеха), за что его критиковали и картезианцы, например, Гюйгенс, считавшие неразумной тратой времени разработку “непостижимой” программы, и некоторые ученики, которые, подобно Коутсу, полагали, что это противоречие не является столь уж серьезной проблемой.179

Таким образом, рациональная позиция по отношению к “привитым” программам состоит в том, чтобы использовать их эвристический потенциал, но не смиряться с хаосом в основаниях, из которых они произрастают. “Старая” (до 1925 г.) квантовая теория в основном подчинялась именно такой установке. После 1925 г. “новая” квантовая теория перешла на “анархистскую позицию”, а современная квантовая физика в ее “копенгаганской” интерпретации стала одним из главных оплотов философского обскурантизма.

В этой новой теории пресловутый “принцип дополнительности” Бора возвел (слабое) противоречие в статус фундаментальной и фактуально достоверной характеристики природы и свел субъективистский позитивизм с аналогичной диалектикой и даже философией повседневного языка в единый порочный альянс. Начиная с 1925 г. Бор и его единомышленники пошли на новое и беспрецедентное снижение критических стандартов для научных теорий. Разум в современной физике отступил и воцарился анархистский культ невообразимого хаоса. Эйнштейн был против: “Философия успокоения Гейзенберга— Бора—или религия? —так тонко придумана, что предоставляет верующему до поры до времени мягкую подушку, с которой не так легко спугнуть его”.180 Однако, с другой стороны, слишком высокие стандарты Эйнштейна, быть может, не позволили ему создать (или опубликовать?) модель атома, наподобие боровской, и волновую механику.

Эйнштейну и его сторонникам не удалось победить в этой борьбе. Сегодняшние учебники физики наперебой твердят нечто вроде следующего: “Квантовая и электромагнитно-полевая концепции дополнительны в смысле Бора. Эта дополнительность — одно из величайших достижений натуральной философии. Копенгагенская интерпретация квантовой теории разрешила древний конфликт между корпускулярной и волновой теориями света. Эта контроверза пронизала всю историю оптики: от Герона из Александрии, указавшего прямолинейность распространения света и геометрические свойства процессов отражения

(1 в. н. э.) к Юнгу и Максвеллу, исследовавшим интерференцию и волновые свойства (XIX в.). Лишь в первой половине XX века квантовая теория излучения, вполне по гегелевски, полностью разрешила этот спор”.181 Теперь вернемся к логике открытия старой квантовой теории, в частности, остановимся подробнее на ее положительной эвристике. По замыслу Бора, вначале должна была войти в игру теория атома водорода. Его первая модель состояла из ядра-протона и электрона на круговой орбите: во второй модели он вычислил эмпирическую орбиту электрона в фиксированной плоскости; затем он отказывается от явно искусственных ограничений, связанных с неподвижностью ядра и фиксированностью плоскости вращения электрона; далее, он хотел учесть возможность вращения (спин) электрона; 182 затем он надеялся распространить свою программу на структуру сложных атомов и молекул, учитывая воздействие на них электромагнитных полей, и т. д. Этот замысел существовал с самого начала: идея аналогии между строением атома и планетарной системой уже намечала в общих чертах весьма обнадеживающую, хотя длительную и нелегкую, программу исследований и даже указывала достаточно ясные принципы, которыми эта программа должна была руководствоваться.183 “В 1913 году казалось, что тем самым найден подходящий ключ к проблеме спектра, и нужны только время и терпение, чтобы разрешить эту проблему окончательно”.184

Знаменитая статья Н. Бора 1913 года была первым шагом в реализации этой исследо-

вательской программы. В ней содержалась первая модель (обозначим ее M1), которая уже была способна предсказывать факты, до этого не предсказуемые ни одной из предшествующих теорий: длины волн спектральных линий водорода [в ультрафиолетовой и дальней инфракрасной областях]. Хотя некоторые длины волн водородного спектра были известны до 1913 г. [серии Бальмера (1885) и серии Пашена (1908)], теория Бора предсказывала значительно больше, чем следовало из этих известный серий. Опыты вскоре подкрепили это новое содержание теории: дополнительные боровские серии были открыты Лайманом (1914), Брэккетом (1922) и Пфундом (1924).

Поскольку серии Бальмера и Пашена были известны до 1913 г., некоторые историки видят в этом пример бэконовского “индуктивного восхождения”: 1) хаос спектральных линий, 2) “эмпирический закон” (Бальмер), 3) теоретическое объяснение (Бор). Это сильно напоминает три “этажа” Уэвелла. Но прогресс науки, наверняка, был бы замедлен, если полагаться на набивший оскомину метод проб и ошибок остроумного швейцарского школьного учителя: магистраль научной абстрагирующей мысли, проложенная смелыми умозрениями Планка, Резерфорда, Эйнштейна и Бора, дедуктивным образом привела бы к результатам Бальмера как к проверочным предложениям по отношению к их теориям, обходясь без так называемого “первопроходчества” Бальмера. Рациональная реконструкция истории науки не обещает авто-

рам “наивных догадок” достойного вознаграждения за их муки.185

На самом деле проблема Бора заключалась не в том, чтобы объяснить серии Бальмера и Пашена, а в том, чтобы объяснить парадоксальную устойчивость атома Резерфорда. Более того, Бор даже не знал об этих формулах до того, как была написана первая версия его статьи.186

Не все новое содержание первой боровской модели M1 нашло подкрепление. Например, M1 претендовала на предсказание всех спектральных линий водорода. Однако были получены экспериментальные свидетельства о таких водородных сериях, которых не могло быть по боровской M1. Это были аномальные ультрафиолетовые серии Пикеринга-Фаулера.

Пикеринг нашел эти серии в 1896 г. в спектре звезды ζ Кормы. Фаулер, после того как первый член серии был подтвержден также наблюдениями во время солнечного затмения в 1898 г., получил всю серию в экспериментах с разрядной трубкой, содержащей смесь водорода и гелия. Конечно, можно было предположить, что линии-монстры не имели ничего общего с водородом, поскольку и Солнце, и звезда ζ Кормы содержат множество газов, а разрядная трубка содержала также гелий. И в самом деле серия не могла ла быть получена в трубке с чистым водородом. Но “экспериментальная техника” Пикеринга и Фаулера, с помощью которой была фальсифицирована гипотеза Бальмера, имела достаточно разумное, хотя никогда специально не проверявшееся, теоретическое основание: а) их серии имели то же число схожде-

ния, что в серии Бальмера, и, следовательно, могли считаться водородными сериями;

б) Фаулер дал приемлемое объяснение, почему гелий не должен приниматься в расчет при образовании этих серий.187

Однако результаты “авторитетных экспериментаторов” не произвели на Бора особого впечатления. Он не сомневался в “точности экспериментов” или “осуществимости их наблюдений”: под сомнение была поставлена “наблюдательная теория”. И, действительно, Бор предложил альтернативу. Вначале он разработал новую модель (M1) своей исследовательской программы: ионизованный атом гелия, ядро которого имело заряд равный удвоенному заряду протона, с единственным электроном на орбите. Эта модель предсказывал ультрафиолетовые серии в спектре ионизованного гелия, которые совпадали с сериями Пикеринга—Фаулера. Это уже была соперничающая теория. Затем он предложил “решающий эксперимент”: он предсказал, что серии Фаулера могут быть получены— и даже с более сильными линиями — разрядной трубке со смесью хлора и гелия. Более того, Бор объяснил экспериментаторам, даже не взглянув на их приборы, каталитическую роль водорода в эксперименте Фаулера и хлора в предложенном им самим эксперименте.188 И он был прав.189 Таким образом первое очевидное поражение исследовательской программы Бора было превращено в славную победу.

Однако эта победа была вскоре оспорена. Фаулер признал, что его серии относились не к водороду, а к гелию. Но он заметил,

что “укрощение монстра” (monster-adjustment)190 нельзя признать действительным:

длины волн в сериях Фаулера значительно отличались от значений, предсказанных М2 Бора. Следовательно, эти серии, хотя не противоречили M1, опровергали M2, но так как M1 и М2 тесно связаны между собой, то это опровергает и M1! 191

Бор отверг аргументы Фаулера: ну, разумеется, ведь он никогда не относился к М2 с полной серьезностью. Предсказанные им значения основывались на грубых подсчетах, в основу которых было положено вращение электрона вокруг неподвижного ядра; разумеется, на самом деле электрон вращается вокруг общего центра тяжести; разумеется, как всегда, когда решается проблема двух тел, нужно заменить редуцироанную массу:

me'=me/[l+(me/mn)].192

Это была уже модифицированная модель Бора — М3. И Фаулер должен был признать, что Бор опять прав.193

Явное опроверждение М2 превратилось в победу Мз; стало ясно, что М2 и М3 могли быть разработаны в рамках исследовательской программы Бора, как и М17 или М20, без каких бы то ни было стимулов со стороны наблюдения или эксперимента. Именно в это время Эйнштейн сказал о теории Бора: “Это одно из величайших открытий”.194

Развитие исследовательской программы Бора затем шло как по заранее намеченному плану. Следующим шагом было вычисление эллиптических орбит. Это было сделано Зоммерфельдом в 1915 г. с тем (неожиданным) результатом, что возрастание числа стацио-

нарных (возможных) орбит не вело к увеличению числа возможных энергетических уровней, так что, по видимости, не было возможности решающего эксперимента, способного выбрать между эллиптической и круговой теориями. Однако электроны вращались вокруг ядра с очень высокой скоростью, следовательно, в соответствии с механикой Эйнштейна, их ускорение приводило к заметному изменению массы. Действительно, вычисляя такие релятивистские поправки, Зоммерфельд получил новый порядок энергетических уровней и “тонкую структуру” спектра.

Переключение на новую релятивистскую модель потребовало значительно большей математической изощренности и таланта, чем разработка нескольких первых моделей. Достижение Зоммерфельда носило главным образом математический характер.

По иронии судьбы, дублеты водородного спектра уже были открыты Майкельсоном в 1891 г. 195-196 Мозли сразу же после первой публикации Бора заметил, что “гипотеза Бора не может объяснить появление второй, более слабой линии, обнаруживаемой в каждом спектре”.197 Это также не огорчило Бора, он был убежден, что положительная эвристика его исследовательской программы должна рано или поздно объяснить и даже исправить наблюдения Майкельсона.198 Так и произошло. Конечно, теория Зоммерфельда была несовместима с первыми моделями Бора; более тонкие эксперименты — с исправленными старыми наблюдениями — дали решающие доказательства в пользу боровской программы. Многие недостатки первых моделей Бора бы-

ли превращены Зоммерфельдом и его мюнхенской школой в победы исследовательской программы Бора.

Интересно, что точно так же, как Эйнштейн на фоне впечатляющего прогресса квантовой физики в 1913 г. остановился в нерешительности, Бор притормозил в 1916 г.; и также, как ранее Бор перехватил инициативу у Эйнштейна, теперь Зоммерфельд перехватил инициативу у самого Бора. Различие между атмосферой копенгагенской школы Бора и мюнхенской школы Зоммерфельда было очевидным: “В Мюнхене использовались более конкретные и потому более понятные формулировки; там были достигнуты большие успехи в систематизации спектров и в применении векторной модели. Но в Копенгагене полагали, что адекватный язык для новых явлений еще не найден, были сдержаны по отношению к слишком определенным формулировкам, выражались более осторожно и более общо — поэтому их было гораздо труднее понять”.199

Все это показывает, как наличие прогрессивного сдвига обеспечивает доверие — и рациональность — по отношению к исследовательской программе с противоречием в основаниях. М. Борн в статье, посвященной памяти М. Планка, дает убедительное описание этого процесса: “Разумеется, само по себе введение кванта действия еще не означало возникновения истинной квантовой теории... Трудности, вызываемые введением кванта действия в общепризнанную классическую теорию, были ясны с самого начала. Со временем они не уменьшались, а возрастали; хо-

тя по ходу исследовании кое-какие из них преодолевались, в теории все равно зияли бреши, которые не могли не тревожить самокритичных теоретиков В основу теории Бора легла гипотеза, которая несомненно была бы отвергнута любым физиком предшествующего поколения. С тем, что некоторые внутриатомные квантованные (т. е. выделенные квантовым принципом) орбиты играют особую роль, еще можно было смириться; труднее было согласиться с тем, что электроны, движущиеся с ускорением по криволинейным траекториям, не излучают энергию Но допущение о том, что точно определенная частота излучаемого кванта световой энергии должна отличаться от частоты излучения электрона, в глазах теоретика, воспитанного в классической школе, выглядело невероятным монстром. Тем не менее, вычисления [а точнее сказать, прогрессивные сдвиги проблем] решают все, и столы начинают вертеться. Если вначале это выглядело как остроумный прием, с помощью которого новый и странный элемент с наименьшим трением подгонялся под существующую систему общепринятых представлений, то затем, захватчик, освоив чужую территорию, стал изгонять с нее прежних обитателей; теперь уже ясно, что старая система треснула по швам, и вопрос только в том, какие швы и в какой мере еще можно сохранить”.200

Важным уроком анализа исследовательских программ является тот факт, что лишь немногие эксперименты имеют действительное значение для их развития. Проверки и “опровержения” обычно дают физику-теоре-

тику столь тривиальные эвристические подсказки, что крупномасштабные проверки или слишком большая суета вокруг уже полученных данных часто бывают лишь потерей времени. Чтобы понять, что теория нуждается в замене, как правило, не нужны никакие опровержения; положительная эвристика сама ведет вперед, прокладывая себе дорогу. К тому же, прибегать к жестким “опровергающим интерпретациям”, когда речь идет о совсем юной программе, — это опасная методологическая черствость. Первые варианты такой программы и применяться-то могут только к “идеальным”, несуществующим объектам;

нужны десятилетия теоретической работы. чтобы получить первые новые факты, и еще больше времени, чтобы возникли такие варианты исследовательской программы, проверка которых могла бы дать действительно интересные результаты, когда опровержения уже не могут быть предсказаны самой же программой

Диалектика исследовательских программ поэтому совсем не сводится к чередованию умозрительных догадок и эмпирических опровержений Типы отношений между процессом развития программы и процессами эмпирических проверок могут быть самыми разнообразными; какой из них осуществляется — вопрос конкретно-исторический. Укажем три наиболее типичных случая.

1) Пусть каждый из следующих друг за другом вариантов H1, Н2, Н3 успешно предсказывают одни факты и не могут предсказать другие, иначе говоря, каждый из этих вариантов имеет как подкрепления, так и опро-

вержения. Затем предлагается Н4, который предсказывает некоторые новые факты, но при этом выдерживает самые суровые проверки. Мы имеем прогрессивный сдвиг проблем и к тому же благообразное чередование догадок и опровержений в духе Поппера.201 Можно умиляться этим классическим примером, когда теоретическая и экспериментальная работы шествуют рядышком, рука об руку.

2) Во втором случае мы имеем дело с каким-нибудь одиноким Бором (может быть, даже без предшествующего ему Бальмера), который последовательно разрабатывает H1, Н2, Н3, Н4, но так самокритичен, что публикует только Н4. Затем Н4 подвергается проверке, и данные оказываются подкрепляющими для Н4—первой (и единственной) опубликованной гипотезы. Тогда теоретик, имеющий дело только с доской и бумагой, оказывается, по-видимости, идущим далеко впереди экспериментатора — перед нами период относительной автономии теоретического прогресса.

3) Теперь представим, что все эмпирические данные, о которых шла речь, уже известны в то время, когда выдвигаются H1, Н2, Н3 и Н4. Тогда вся эта последовательность теоретических моделей не выступает как прогрессивный сдвиг проблем, и поэтому, хотя все данные подкрепляют его теории, ученый должен работать над новыми гипотезами, чтобы доказать научную значимость своей программы.202 Так может получиться либо из-за того, что более ранняя исследовательская программа (вызов которой брошен той

· 112

программой, которая реализуется в последовательности H1,..., Н4), уже произвела все эти факты, либо из-за того, что правительство отпустило слишком много денег на эксперименты по коллекционированию спектральных линий и все рабочие лошади науки пашут именно это поле. Правда, второй случай крайне маловероятен, ибо, как сказал бы Каллен, “число ложных фактов, заполоняющих мир, бесконечно превышает число ложных теорий”203; в большинстве случаев, когда исследовательская программа вступает в конфликт с известными фактами, теоретики будут видеть причину этого в “экспериментальной технике”, считать несовершенными “наблюдательные теории”, которые лежат в ее основе, исправлять данные, полученные экспериментаторами, получая таким образом новые факты.204

После этого методологического отступления, вернемся снова к программе Бора. Когда была впервые сформулирована ее положительная эвристика, не все направления развития этой программы можно было предвидеть и планировать. Когда появились некоторые неожиданные трещины в остроумных моделях Зоммерфельда (не были получены некоторые предсказанные спектральные линии), Паули предложил глубокую вспомогательную гипотезу (“принцип исключения”), с помощью которой не только были закрыты бреши теории, но придан новый вид периодической системе элементов и предсказаны ранее неизвестные факты.

В мои намерения не входит развернутое изложение того, как развивалась программа

Бора. Но тщательный анализ ее истории — поистине золотое дно для методологии: ее изумительно быстрый прогресс—на противоречивых основаниях! — потрясает, ее красота, оригинальность и эмпирический успех ее вспомогательных гипотез, выдвигавшихся блестящими и даже гениальными учеными, беспрецедентны в истории физики.205 Иногда очередной вариант программы требовал только незначительного усовершенствования (например, замены массы на уменьшающуюся массу). Иногда, однако, для получения очередного варианта требовалась новая утонченная математика (например, математический аппарат, применяемый при решении задач со многими телами) либо новые остроумные физические вспомогательные гипотезы. Добавочная математика или физика черпались либо из наличного знания (например, из теории относительности), либо изобретались заново (например, принцип запрета Паули). В последнем случае имел место “креативный сдвиг” в положительной эвристике.

Но даже эта великая программа подошла к точке, в которой ее эвристическая сила иссякла. Гипотезы ad hoc множились и не сменялись объяснениями, увеличивающими содержание. Например, боровская теория молекулярного (совместного) спектра предсказывала следующую формулу для двухатомных молекул:

ν = h [(m+l)2-m2 ]/8π 2 J

но эта формула была опровергнута. Приверженцы теории заменили m2 на m(m+1), это помогло объяснить факты, но было явным приемом ad hoc.

Затем пришла очередь проблемы необъяснимых дублетов в спектре щелочи. Ланде объяснил их в 1924 г., введя ad hoc “релятивистское правило расщепления”, Гаудсмит и Уленбек—в 1925 г. с помощью спина электрона. Объяснение Ланде было ad hoc, а объяснение Гаудсмита и Уленбека, кроме того, было еще и несовместимо со специальной теорией относительности; “периферическая скорость” электрона во много раз превышала скорость света, а сам электрон заполнял весь объема атома.205 Нужна была безумная смелость для такого предположения (Крониг пришел к этой идее раньше, но воздержался от ее публикации, считая гипотезу невероятной и неприемлемой).206

Но безрассудная смелость, проявлявшаяся в выдвижении диких и необузданных фантазий в качестве научных гипотез, не приносила ощутимых плодов. Программа запаздывала за открытиями “фактов”. Неукротимые аномалии заполонили поле исследования. Накапливая бесплодные противоречия и умножая число гипотез ad hoc, программа вступила в регрессивную фазу: она начала, по любимому выражению Поппера “терять свой эмпирический характер”.207 Кроме того, многие проблемы, подобные тем, какие возникали в теории возмущений, по-видимому, даже не могли ожидать своего решения в ее рамках. Вскоре возникла соперничающая исследовательская программа — волновая механика. Эта новая программа не только объяснила квантовые условия Планка и Бора уже в своем первом варианте (де Бройль, 1924 г.), она вела к будоражащим открытиям новых

фактов (эксперименты Дэвиссона и Джермера) В последующих, более утонченных вариантах она предложила решения проблем, бывших недосягаемыми для исследовательской программы Бора, а также объяснила все те факты, ради которых в боровской программе (в ее позднейших вариантах) выдвигались гипотезы ad hoc, и сделала это с помощью теорий, удовлетворяющих самым высоким методологическим критериям Волновая механика вскоре обогнала, подчинила себе и затем вытеснила программу Бора

Статья де Бройля вышла в то время, когда программа Бора уже регрессировала Но это было простым совпадением Задумаемся. что произошло бы, если бы де Бройль написал и опубликовал свою статью в 1914 г., а не в 1924 г.?

 

(г) Новый взгляд на решающие эксперименты конец скороспелой рациональности

Мы сделали бы ошибку, предположив, что ученый обязан оставаться сторонником некой исследовательской программы до тех пор, пока она не исчерпает весь запас своей эвристической силы, что он не может предложить иную соперничающую программу до того, как уже всем станет ясно, что прежняя программа достигла точки, с которой начинается регрессия. (Хотя, конечно, можно понять раздражение физика, когда, работая в самом разгаре прогрессивной фазы исследовательской программы, он наблюдает размножение неясных метафизических теорий, не дающих ниче-

го для эмпирического прогресса208). Ученый не должен соглашаться с тем, что исследовательская программа превращается в Weltanschauung, * некое воплощение научной строгости, претендующее на роль всезнающего арбитра, определяющего что можно и что нельзя считать научным объяснением, подобно тому, как, ссылаясь на математическую строгость, пытаются решать, что можно, а что нельзя считать математическим доказательством. К сожалению, именно на такой позиции стоит Т. Кун то, что он называет нормальной наукой”, на самом деле есть не что иное, как исследовательская программа, захватившая монополию. В действительности же исследовательские программы пользуются полной монополией очень редко, к тому же очень недолго, какие бы усилия не предпринимали картезианцы ли, ньютонианцы ли, сторонники ли Бора. История науки была и будет историей соперничества исследовательских программ (или, если угодно, “парадигм”), но она не была и не должна быть чередованием периодов нормальной науки чем быстрее начинается соперничество, тем лучше для прогресса “Теоретический плюрализм” лучше, чем “теоретический монизм” здесь я согласен с Поппером и Фейерабендом и не согласен с Куном 209

От идеи соперничества научных исследовательских программ мы переходим к проблеме как элиминируются исследовательские программы? Из всего хода предшествующих рассуждений следует, что регрессивный сдвиг проблем может рассматриваться как причина элиминации исследовательской программы

не в большей степени, чем старомодные “опровержения” или куновские “кризисы”. Возможны ли какие-либо объективные (в отличие от социо-психологических причины, по которым программа должна быть отвергнута, то есть элиминировано ее твердое ядро и программа построения защитных поясов? Вкратце, наш ответ состоит в том, что такая объективная причина заключена в действии соперничающей программы, которой удается объяснить все предшествующие успехи ее соперница которую она к тому же превосходит дальнейшей демонстрацией эвристической силы.210

Однако критерий “эвристической силы” сильно зависит от того, как мы понимаем “фактуальную новизну”. До сих пор мы предполагали, что можно непосредственно установить, предсказывает новая теория новые факты или нет. Однако новизна фактуального высказывания часто становится явной только спустя много времени. Чтобы показать это, я начну с примера.

Формула Бальмера для линий водородного спектра может быть выведена как следствие из теории Бора. Было ли это новым фактом? Поспешный ответ мог бы состоять в том, что никакой новизны здесь нет, поскольку формула Бальмера была известна ранее. Но это только половина истины. Бальмер просто наблюдал B1: водородные линии подчинены бальмеровской формуле. Бор предсказал B2: бальмеровская формула описывает различия энергетических уровней на различных орбитах электрона в атоме водорода. Можно было бы сказать, что B1 уже содержит в себе

все чисто “наблюдаемое” содержание В2. Но это значило бы, что предполагается чисто “наблюдательный” уровень, не зараженный теорией и не восприимчивый к теоретическому изменению. На самом деле Bi было принято только потому, что оптические, химические и другие теории, на которые опиралось наблюдение Бальмера, были хорошо подкреплены и признаны в качестве интерпретативных теорий; но и эти теории всегда могут быть поставлены под вопрос. Могут сказать, что В1 может быть “очищено” от теоретических предпосылок, и тогда то, что действительно наблюдал Бальмер, выражается более скромным утверждением В0: спектральные линии полученные в некоторых разрядных трубках при определенных точно фиксированных условиях (или в ходе “контролируемого эксперимента”), подчиняются бальмеровской формуле. Однако известные аргументы Поппера показывают, что подобным образом мы никогда не приходим к какому-либо последнему основанию “чистого наблюдения”; как легко показать, “наблюдательные” теории стоят и за спиной В0.211-214 С другой стороны, если учесть длительное и прогрессивное развитие программы Бора, можно сказать, что, доказав свою эвристическую силу, ее твердое ядро само получило хорошее подкрепление215 и поэтому могла рассматриваться как “наблюдательная” или интерпретативная теория. Но тогда В2 уже рассматривается не просто как теоретическая переинтерпретация B1, но как некоторый новый факт.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.