Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Конденсаторы. Для того чтобы проводник обладал большой емкостью, он должен иметь очень большие размеры






 

Для того чтобы проводник обладал большой емкостью, он должен иметь очень большие размеры. На практике, однако, необходимы устройства, обладающие способностью при малых размерах и небольших относительно окружающих тел потенциалах накапливать значительные по величине заряды, иными словами, обладать большой емкостью. Эти устройства получили название конденсаторов.

Если к заряженному проводнику приближать другие тела, то на них возникают индуцированные (на проводнике) или связанные (на диэлектрике) заряды, причем ближайшими к наводящему заряду Q будут заряды противоположного знака. Эти заряды, естественно, ослабляют поле, создаваемое зарядом Q, т. е. понижают потенциал проводника, что приводит к повышению его электроемкости.

Конденсатор состоит из двух проводников (обкладок), разделенных диэлектриком. На емкость конденсатора не должны оказывать влияния окружающие тела, поэтому проводникам придают такую форму, чтобы поле, создаваемое накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) два коаксиальных цилиндра; 3) две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, цилиндрические и сферические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, возникающие на разных обкладках, являются равными по модулю разноименными зарядами. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (j1 - j2) между его обкладками:

. (4)

Рассчитаем емкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды + Q и - Q. Если расстояние между пластинами мало по сравнению с их линейными размерами, то краевыми эффектами можно пренебречь и поле между обкладками считать однородным. Его можно рассчитать, используя формулу

и формулу (4). При наличии диэлектрика между обкладками разность потенциалов между ними:

, (5)

где e-диэлектрическая проницаемость. Тогда из формулы (4), заменяя , с учетом (5) получим выражение для емкости плоского конденсатора:

. (6)

Для определения емкости цилиндрического конденсатора, состоящего из двух полых коаксиальных цилиндров с радиусами r1 и r2 (r2> r1), вставленных один в другой, вновь пренебрегая краевыми эффектами, считаем поле радиально-симметричным и сосредоточенным между цилиндрическими обкладками. Разность потенциалов между обкладками вычислим по формуле для поля равномерно заряженного бесконечного цилиндра с линейной плотностью (l – длина обкладок):

. (7)

Подставив (7) в (4), получим выражение для емкости цилиндрического конденсатора:

. (8)

Для определения емкости сферического конденсатора, состоящего из двух концентрических обкладок, разделенных сферическим слоем диэлектрика, используем формулу для разности потенциалов между двумя точками, лежащими на расстояниях r1 и r2 (r2> r1) от центра заряженной сферической поверхности. С учетом наличия диэлектрика между обкладками

разность потенциалов:

. (9)

Подставив (9) в (4), получим электроемкость сферического конденсатора

. (10)

Замечание: при малой величине зазора по сравнению с радиусом сферы выражения для емкости сферического (10) и плоского (6) конденсаторов совпадают. Это же справедливо и для цилиндрического конденсатора: при малом зазоре между цилиндрами по сравнению с их радиусами формулы (8) и (6) также совпадают.

Из формул (6), (8) и (10) вытекает, что емкость конденсаторов любой формы прямо пропорциональна диэлектрической проницаемости диэлектрика, заполняющего пространство между обкладками. Поэтому применение в качестве прослойки сегнетоэлектриков значительно увеличивает емкость конденсаторов. Это происходит потому, что при тех же самых зарядах на обкладках разность потенциалов между ними уменьшается в e раз. Уменьшение разности потенциалов обозначает, что напряженность поля в конденсаторе при его заполнении диэлектриком делается меньше в e раз. В этом и состоит причина увеличения емкости конденсатора.

Конденсаторы характеризуются пробивным напряжением — разностью потенциалов между обкладками конденсатора, при котором происходит пробой - электрический разряд через слой диэлектрика в конденсаторе. Пробивное напряжение зависит от формы обкладок, свойств диэлектрика и его толщины.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.