Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Исследование состояний полимеров методом ТМА






 

Полимеры могут находиться в двух фазовых состояниях: кристаллическом (рис2) и аморфном (рис 3).

В газообразном фазовом состоянии полимеры находится не могут, так как температура кипения значительно больше температуры разложения.

Кристаллическое фазовое состояние характеризуется наличием трехмерного дальнего порядка в расположении атомов и молекул. Дальний порядок - порядок, соблюдающийся на расстояниях, превышающих размеры молекул в сотни и тысячи раз.

Жидкое (аморфное) фазовое состояние характеризуется отсутствием кристаллической структуры. В аморфном состоянии наблюдается ближний порядок - порядок, который соблюдается на расстояниях, соизмеримых с размерами молекул. Вблизи данной молекулы ее соседи могут быть расположены в определенном порядке, а на небольшом расстоянии этот порядок отсутствует.

Кристаллизация полимеров может происходить по различным механизмам: сферолитному, пластинчатому, фибриллярному и т.п.

Существует несколько моделей надмолекулярной организации аморфных полимеров: глобулярная, пачечная, доменная, кластерная и др.

 

Рис.2. Сферолитная структура Рис. 3. Глобулярная структура

 

Таким образом, макромолекулы в полимерах расположены не хаотично, а имеют упорядоченное расположение, то есть возникает определенная надмолекулярная структура.

Для аморфных линейных полимеров высокой молекулярной массы термомеханическая кривая имеет три участка(рис.3), соответствующие трем физическим состояниям. Действующая нагрузка должна быть заданной и малой по величине, чтобы механические воздействия на полимер не приводили к изменению его структуры.

Каждому из релаксационных состояний полимера соответствует определенный преимущественный тип деформаций.

Первый участок соответствует стеклообразному состоянию, для которого характерны малые деформации, и полимер ведет себя как обычное твердое тело с высоким модулем упругости Е =(20 - 50)108 Па.

 

 

Второй участок соответствует высокоэластическому состоянию с большими обратимыми деформациями, которые превосходят упругую составляющую в тысячу раз, и характеризуется модулем высокоэластичности (Евэл = 105 - 106 Па

Третий участок соответствует вязкотекучему состоянию, для которого характерна пластическая деформация (течение), связанная с взаимным перемещением макромолекул под действием приложенного усилия. В общем случае деформация реального полимера должна рассматриваться как сумма трех типов деформаций:

e = eупр + eвэл + eпласт

Рис.4 Термомеханическая кривая аморфных соединений

Для структурирующих полимеров характер термомеханической кривой зависит от того, в какой области температур реакции сшивания протекают с заметными скоростями ТО1 выше Тт, то полимер переходит в вязкотекучее состояние, но по мере образования поперечных химических связей деформация течения уменьшается (рис.5, кривая 1). При достаточном числе этих связей течение становится невозможным и полимер из вязкотекучего состояния переходит в высокоэластическое и, наконец, в стеклообразное. Если в полимере поперечные связи образуются при температуре Т02 ниже Тт, то перейти в вязкотекучее состояние он не может и увеличение температуры приводит к уменьшению высокоэластической деформации, и полимер переходит в стеклообразное состояние (рис.5, кривая 2).

Таким образом, сшитый полимер может находится только в двух физических срстояниях: высокоэластическом и стеклообразным.

Рассмотренные температурные переходы Тс и Тт из одного физического состояния в другое являются основными характеристиками свойств полимеров и имеют большое значение.

Например, при использовании пластических масс, волокон, пленок в промышленности, где необходима высокая прочность, лежащие в их основе полимеры должны находиться в стеклообразном или кристаллическом физических состояниях. Резиновой промышленности необходимы полимеры, находящиеся в высокоэластическом состоянии (эластомеры), сохраняющие свои специфические свойства в широком интервале температур.

 

Процессы переработки полимеров происходят, главным образом, в области вязкотекучего состояния.

Таким образом, данные термомеханического анализа могут быть использованы для оценки технологических и эксплутационных характеристик полимерных материалов.

 

Рис.5 Термомеханическая кривая сетчатых полимеров

 

Лекция

(Продолжение темы – ТМА полимеров)






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.