Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Волновое уравнение.






Одним из наиболее распространенных в ин­женерной практике уравнений с частными производными второго порядка является волновое уравнение, описывающее различные виды колебаний. Поскольку колебания — процесс нестационарный, то одной из независи­мых переменных является время t. Кроме того, независимыми перемен­ными в уравнении являются также пространственные координаты х, у, z. В зависимости от их количества различают одномерное, двумерное и трех­мерное волновые уравнения.

Одномерное волновое уравнение описывает продольные колебания стерж­ня, сечения которого совершают плоскопараллельные колебательные движе­ния, а также поперечные колебания тонкого стержня и другие задачи. Двумерное волновое уравнение используется для исследования колебаний тонкой пластины. Трехмерное волновое уравнение описывает распространение волн в пространстве.

Рассмотрим одномерное волновое уравнение, которое можно записать в виде

 

Для поперечных колебаний струны искомая функция U(x, t) описывает положение струны в момент t. В этом случае , где Т — натя­жение струны, — ее линейная плотность. Уравнение записано для случая свободных колебаний. Сопротивление среды колебательному процессу не учитывается.

 

 

Решим задачу Коши для этого уравнения. Вот условия задачи:

 

Эти условия описывают начальную форму струны и скорость ее точек.

На практике чаще приходится решать не задачу Коши для бесконечной струны, а смешанную задачу для ограниченной струны некоторой дли­ны . В этом случае задают граничные условия на ее концах. В частности, при закрепленных концах их смещения равны нулю, и граничные условия имеют вид

 

 

 

 

Для решения такой задачи используем явную трехслойную схему типа крест. Заменим в начальном уравнении вторые производные искомой функции U по t и х их конечно-разностными соотношениями с помощью значений сеточной функции в узлах сетки

Отсюда можно найти явное выражение для значения сеточной функции на (j + 1)-м слое:

Здесь, как обычно в трехслойных схемах, для определения неизвестных значений на (j + 1)-м слое нужно знать решения на j-м и (j — 1)-м слоях. Поэтому начать счет можно лишь для второ­го слоя, а решения на нулевом и первом слоях должны быть известны. Они находятся с помощью начальных условий. На нулевом слое имеем

Для получения решения на первом слое воспользуемся вторым началь­ным условием. Производную заменим конечно-разностной аппроксимацией.

Из этого соотношения можно найти значения сеточной функции на пер­вом временном слое:

Отметим, что аппроксимация начального условия в таком виде ухуд­шает аппроксимацию исходной дифференциальной задачи: погрешность аппроксимации становится порядка , т. е. первого порядка по , хотя сама схема имеет второй порядок аппроксимации по h и . Положение можно исправить, если взять более точное представление

Так как,

то:






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.